Arithmétique

1 Divisibilité, division euclidienne

Relation de divisibilité

Congruence, division euclidienne

Exercice 1: Exercice

Soit $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$ tels que $a \equiv b$ [n]. Montrer que

$$a^n \equiv b^n \ [n^2]$$
.

2 pgcd, ppcm

Plus grand commun diviseur

Algorithme d'Euclide

Exercice 2 : Divers calculs de pgcd

Soit $a, b \in \mathbb{Z}$. Calculer

a.
$$(a^3 + 3a^2 - 5) \wedge (a + 2)$$
, **b.** $(15a^2 + 8a + 6) \wedge (30a^2 + 21a + 13)$, **c.** $(a^4 + 3a^2 - a + 2) \wedge (a^2 + a + 1)$, **d.** $(a^3 + a) \wedge (2a + 1)$,

e.
$$(a-b)^3 \wedge (a^3-b^3)$$
.

Relation de Bézout

Exercice 3 : Calculs des coefficients de Bézout

Résoudre dans $\mathbb Z$ les équations suivantes

a.
$$95x + 71y = 1$$
, **b.** $24x - 15y = 3$, **c.** $12x + 15y + 20z = 1$.

Lemme de Gauss

Exercice 4 : Autour de la suite de Fibonacci

On définit la suite de Fibonacci par :

$$F_0 \coloneqq 0, \quad F_1 \coloneqq 1 \quad \text{et} \quad \forall n \in \mathbb{N}, \quad F_{n+2} \coloneqq F_{n+1} + F_n.$$

1. Démontrer que

$$\forall n \in \mathbb{N}^*, \quad F_{n+1}F_{n-1} - F_n^2 = (-1)^n.$$

En déduire que F_n et F_{n+1} sont premiers entre eux.

2. Démontrer que

$$\forall n \in \mathbb{N}, \quad \forall p \in \mathbb{N}^*, \quad F_{n+p} = F_p F_{n+1} + F_{p-1} F_n.$$

En déduire que $F_n \wedge F_p = F_{n+p} \wedge F_p$.

3. Montrer que

$$\forall n, p \in \mathbb{N}, \quad F_n \wedge F_p = F_{n \wedge p}.$$

Exercice 5 : Reste de la division euclidienne d'une puissance

Soit n un entier supérieur à 2 et $a \in \mathbb{Z}$, premier avec n. Pour tout entier k on note r_k le reste de la division euclidienne de a^k par n.

- 1. Montrer que la suite r est périodique. Pour cela on montrera dans l'ordre :
 - (a) Il existe $k_1, k_2 \in \mathbb{N}$ tels que $k_1 < k_2$ et $a^{k_1} \equiv a^{k_2}$ [n].
 - (b) Il existe $T \in \mathbb{N}^*$ tel que $a^T \equiv 1$ [n].
 - (c) Conclure.
- 2. Quel est le reste de la division euclidienne de 3^{1998} par 5?
- 3. Montrer que 13 divise $3^{126} + 5^{126}$.

Exercice 6 : Le théorème chinois

On se donne $p_1, p_2 \in \mathbb{N}^*$ deux entiers premiers entre eux, et a_1 et $a_2 \in \mathbb{Z}$.

1. On souhaite montrer qu'il existe $n \in \mathbb{Z}$ tel que

$$n \equiv a_1 \quad [p_1]$$
 et $n \equiv a_2 \quad [p_2].$

- (a) Prouver l'existence d'un tel n lorsque $a_1 = 1$ et $a_2 = 0$, puis lorsque $a_1 = 0$ et $a_2 = 1$.
- (b) En déduire le cas général.
- 2. En déduire l'ensemble des solutions du système

$$n \equiv a_1 \quad [p_1]$$
 et $n \equiv a_2 \quad [p_2]$.

3. Résoudre le système

$$n \equiv 3$$
 [21] et $n \equiv 1$ [5].

Exercice 7: Les pirates

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui-ci reçoit 3 pièces.

Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Exercice 8: Ordre d'un produit

Soit (G, \star) un groupe fini et x, y deux éléments de G d'ordres respectifs ω_x et $\omega_y \in \mathbb{N}^*$. On suppose que $x \star y = y \star x$ et que $\omega_x \wedge \omega_y = 1$.

- 1. Montrer que $Gr(x) \cap Gr(y) = \{e\}.$
- 2. En déduire que xy est d'ordre $\omega_x\omega_y$.

Plus petit commun multiple

Exercice 9: Calcul de ppcm

Soit $a, b \in \mathbb{Z}$. Calculer

$$(a+b) \lor (a \land b).$$

3 Nombres premiers

Nombres premiers

Exercice 10 : Système de chiffrement RSA

On se donne deux nombres premiers p et q distincts, on pose n := pq et on définit

$$\varphi(n) := \operatorname{Card}\{k \in [0, n-1] \mid k \wedge n = 1\}.$$

- 1. Soit $c \in \mathbb{N}$ tel que $c \land \varphi(n) = 1$. Montrer qu'il existe $d \in \mathbb{N}$ tel que $cd \equiv 1$ $[\varphi(n)]$.
- 2. Montrer que $\varphi(n) = (p-1)(q-1)$.
- 3. Montrer que si $t \in \mathbb{Z}$, alors $t^{cd} \equiv t$ [n].

Exercice 11 : Encadrement du n-ième nombre premier

Pour tout $n \in \mathbb{N}^*$, on note p_n le *n*-ième nombre premier.

1. Montrer que

$$\forall n \in \mathbb{N}^*, \quad p_{n+1} \leqslant p_1 \cdots p_n + 1.$$

2. En déduire que

$$\forall n \in \mathbb{N}^*, \quad p_n \leqslant 2^{2^n}.$$

3. Soit $x \in \mathbb{R}_+$. On note $\pi(x)$ le nombre de nombres premiers inférieurs ou égaux à x. Montrer que pour x assez grand

$$\ln(\ln x) \leqslant \pi(x) \leqslant x.$$

On démontrera le fait que pour $n \geqslant 3$, $e^{e^{n-1}} \geqslant 2^{2^n}$.

Exercice 12 : Cas particuliers du théorème de Dirichlet

- 1. (a) Montrer que tout entier naturel congru à 3 modulo 4 possède au moins un diviseur premier congru à 3 modulo 4.
 - (b) Montrer qu'il existe une infinité de nombres premiers congrus à 3 modulo 4.
- 2. Montrer qu'il existe une infinité de nombres premiers congrus à 5 modulo 6.

Le théorème de Dirichlet affirme que si a et b sont premiers entre eux, il existe une infinité de nombres premiers de la forme ak + b.

Exercice 13: Pour les Toulousaings

Soit $a_1, \ldots, a_{1789} \in \mathbb{Z}$ tels que

$$\sum_{k=1}^{1789} a_k = 0$$

Montrer que

$$\sum_{k=1}^{1789} a_k^{37} \equiv 0 \ [399].$$

Valuation p-adique, décomposition en facteurs premiers

Exercice 14 : Divisibilité

Soit $a, b \in \mathbb{Z}$. Montrer que

$$a|b \iff a^2|b^2.$$