Groupes

Table des matières

1	Gro	oupe	
	1.1	Loi de composition interne	
	1.2	Groupe	
		Ordre d'un élément	
	~		
2	Groupe symétrique		
		Groupe symétrique	
	2.2	Décomposition en cycles à supports disjoints	
		Signature groupe alterné	

1 Groupe

1.1 Loi de composition interne

Définition 1.1

Soit E un ensemble. On appelle loi de composition interne toute application \star de $E \times E$ dans E.

$$\begin{array}{cccc} \star: & E\times E & \longrightarrow & E \\ & (x,y) & \longmapsto & x\star y \end{array}$$

Définition 1.2

La loi ★ est dite

associative lorsque

$$\forall x, y, z \in E, \quad (x \star y) \star z = x \star (y \star z).$$

— commutative lorsque

$$\forall x,y \in E, \quad x \star y = y \star x.$$

Exemples

- \Rightarrow L'addition et la multiplication sont des lois de composition interne sur \mathbb{Z} , associatives et commutatives.
- ⇒ L'exponentiation est une loi de composition interne sur N qui n'est ni associative, ni commutative.
- \Rightarrow Si X est un ensemble, la composition est une loi de composition interne associative sur $E := \mathcal{F}(X, X)$. Elle n'est pas commutative dès que X possède au moins deux éléments.
- \Rightarrow Le produit matriciel est une loi de composition interne associative sur $\mathcal{M}_n(\mathbb{C})$. Elle est n'est pas commutative dès que $n \geqslant 2$.

Remarques

 \Rightarrow Soit \star une loi associative. Quels que soient $x,y,z,t\in E,$ les 5 expressions suivantes sont égales :

$$\begin{split} (x\star y)\star (z\star t), \quad &((x\star y)\star z)\star t,\\ (x\star (y\star z))\star t, \quad &x\star ((y\star z)\star t), \quad x\star (y\star (z\star t)). \end{split}$$

On admettra plus généralement que toute expression de n éléments construite à l'aide de la loi \star ne dépend pas de l'emplacement des parenthèses. C'est pourquoi on se permettra de les omettre.

 \Rightarrow On dit que deux éléments $x, y \in E$ commutent lorsque $x \star y = y \star x$.

Définition 1.3

Une partie A de E est dite stable par \star lorsque

$$\forall x,y\in A,\quad x\star y\in A.$$

Remarque

 \Rightarrow Si \star est une loi de composition interne sur E et $A \in \mathcal{P}(E)$ est stable par \star , alors la loi

$$\begin{array}{cccc} \star_A: & A\times A & \longrightarrow & A \\ & (x,y) & \longmapsto & x\star y \end{array}$$

est une loi de composition interne sur A. On continuera à la noter \star .

Définition 1.4

On dit que \star admet un élément neutre $e \in E$ lorsque

$$\forall x \in E, \quad x \star e = x \quad \text{et} \quad e \star x = x.$$

Si tel est le cas, il est unique et on l'appelle élément neutre de \star . Lorsque la loi est notée additivement, l'élément neutre est noté 0.

Remarque

 $\, \Rightarrow \,$ Par convention, lorsqu'une loi est notée additivement, elle sera toujours commutative.

Exercice 1

 \Rightarrow Parmi les lois de composition interne citées plus haut, lesquelles admettent un élément neutre?

Dans toute la suite de ce cours, on supposera, sauf mention explicite du contraire, que les lois sont associatives et admettent un élément neutre.

Définition 1.5

Soit $x \in E$. On définit par récurrence x^n pour tout $n \in \mathbb{N}$ en posant :

$$-x^0 \coloneqq e$$

$$\forall n \in \mathbb{N}, \quad x^{n+1} \coloneqq x^n \star x.$$

Remarque

 \Rightarrow Lorsque la loi est notée additivement, on n'utilise pas la notation x^n mais plutôt la notation $n \cdot x$. On a donc :

$$-0 \cdot x = 0$$

$$\forall n \in \mathbb{N}, (n+1) \cdot x = n \cdot x + x.$$

Proposition 1.6

— Soit $x \in E$. Alors

$$\forall m, n \in \mathbb{N}, \qquad x^{m+n} = x^m \star x^n$$
$$(x^m)^n = x^{mn}.$$

— Soit $x, y \in E$ tels que $x \star y = y \star x$. Alors, pour tout $n, m \in \mathbb{N}$, x^n et y^m commutent. De plus

$$\forall n \in \mathbb{N}, \quad (x \star y)^n = x^n \star y^n.$$

Remarque

⇒ Si la loi est notée additivement, on a donc :

$$\begin{aligned} \forall x \in E, \quad \forall m, n \in \mathbb{N}, & \quad (m+n) \cdot x = m \cdot x + n \cdot x \\ & \quad n \cdot (m \cdot x) = (nm) \cdot x \\ \forall x, y \in E, \quad \forall n \in \mathbb{N}, & \quad n \cdot (x+y) = n \cdot x + n \cdot y. \end{aligned}$$

Définition 1.7

Soit $x \in E$. On dit que x est symétrisable pour la loi \star lorsqu'il existe $y \in E$ tel que

$$x \star y = y \star x = e$$
.

Si tel est le cas, y est unique et est appelé $sym\acute{e}trique$ de x. On l'appelle inverse de x et on le note x^{-1} lorsque la loi est notée multiplicativement. On l'appelle $oppos\acute{e}$ de x et on le note -x lorsque la loi est notée additivement.

Proposition 1.8

— Si x est symétrisable, x^{-1} l'est et

$$(x^{-1})^{-1} = x.$$

— Si x et y sont symétrisables, $x \star y$ l'est et

$$(x \star y)^{-1} = y^{-1} \star x^{-1}.$$

Définition 1.9

Soit $x \in E$. Si x est symétrisable, on étend la définition de x^n en posant :

$$\forall n \in \mathbb{Z}, \quad x^n \coloneqq \begin{cases} x^n & \text{si } n \geqslant 0\\ \left(x^{-n}\right)^{-1} & \text{si } n < 0. \end{cases}$$

Proposition 1.10

— Soit $x \in E$. Si x est symétrisable

$$\forall m, n \in \mathbb{Z}, \qquad x^{m+n} = x^m \star x^n$$

 $(x^m)^n = x^{mn}.$

— Si $x, y \in E$ sont symétrisables et commutent, alors

$$\forall n \in \mathbb{Z}, \quad (x \star y)^n = x^n \star y^n.$$

Remarque

 \Rightarrow Lorsque la loi est notée additivement, on a donc :

$$\forall x \in E, \quad \forall m, n \in \mathbb{Z}, \qquad (m+n) \cdot x = m \cdot x + n \cdot x$$

$$n \cdot (m \cdot x) = (nm) \cdot x$$

$$\forall x, y \in E, \quad \forall n \in \mathbb{Z}, \qquad n \cdot (x+y) = n \cdot x + n \cdot y.$$

Définition 1.11

On dit qu'un élément x de E est $r\acute{e}gulier$ lorsque

$$\forall y, z \in E, \quad x \star y = x \star z \implies y = z$$

 $y \star x = z \star x \implies y = z.$

Proposition 1.12

Les éléments symétrisables sont réguliers.

1.2 Groupe

Définition 1.13

Soit G un ensemble muni d'une loi de composition interne \star . On dit que (G,\star) est un groupe lorsque

- \star est associative
- -- \star admet un élément neutre
- tout élément de G est symétrisable.

Le groupe (G, \star) est dit commutatif (ou abélien) lorsque la loi \star est commutative.

Remarques

- \Rightarrow (\mathbb{C} , +) et (\mathbb{C}^* , \times) sont des groupes commutatifs.
- \Rightarrow Si (G, \star) est un groupe et $a, b \in G$, alors

$$\forall x \in G, \quad a \star x = b \iff x = a^{-1} \star b.$$

De même

$$\forall x \in G, \quad x \star a = b \iff x = b \star a^{-1}.$$

 \Rightarrow Si (G, \star) est un groupe fini, on appelle table de (G, \star) le tableau à deux entrées dont les lignes et les colonnes sont indexées par les éléments de G et qui contient les produits $x \star y$. Puisque (G, \star) est un groupe, chaque ligne et chaque colonne contient une et une seule fois chaque élément de G.

Exercice 2

⇒ Montrer qu'il n'existe qu'une seule table de groupe à 3 éléments.

Définition 1.14

Soit (G, \star) un groupe et H une partie de G. On dit que H est un sous-groupe de (G, \star) lorsque

- $-e \in H$
- $-- \ \forall x, y \in H, \quad x \star y \in H$
- $\forall x \in H, \quad x^{-1} \in H.$

Si tel est le cas, alors (H, \star) est un groupe.

Remarques

- \Rightarrow Si H est un sous-groupe de G, alors : $\forall x \in H$, $\forall n \in \mathbb{Z}$, $x^n \in H$.
- \Rightarrow En pratique, pour montrer que (H,\star) est un groupe, on le fera presque toujours apparaître comme sous-groupe d'un groupe connu.

Exemples

- \Rightarrow Si (G, \star) est un groupe, G et $\{e\}$ sont des sous-groupes de G. Le sous-groupe $\{e\}$ est appelé groupe trivial.
- $\Rightarrow \mathbb{R}$ et \mathbb{Z} sont des sous-groupes de $(\mathbb{C}, +)$. De même, \mathbb{R}^* et \mathbb{U} sont des sous-groupes de (\mathbb{C}^*, \times) .

Proposition 1.15

Si $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) est un groupe dont l'élément neutre est 1.

Proposition 1.16

Soit E un ensemble. On note $\sigma(E)$ l'ensemble des bijections de E dans E. Alors $(\sigma(E), \circ)$ est un groupe, appelé groupe des permutations de E, dont l'élément neutre est Id_E .

Exercice 3

 \Rightarrow Montrer que l'ensemble des bijections strictement croissantes de \mathbb{R} dans \mathbb{R} est un sous-groupe de $(\sigma(\mathbb{R}), \circ)$.

Proposition 1.17

L'intersection d'une famille de sous-groupes est un sous-groupe.

Remarque

⇒ Contrairement à l'intersection, l'union de deux sous-groupes n'est en général pas un sous-groupe.

Définition 1.18

Soit (G, \star) un groupe et A une partie de G. Alors, au sens de l'inclusion, il existe un plus petit sous-groupe de G contenant A; on l'appelle groupe engendré par A et on le note Gr(A).

Remarque

 \Rightarrow Si (G, \star) est un groupe et x est un élément de G, le groupe engendré par $\{x\}$, appelé aussi groupe engendré par x, est $\{x^k : k \in \mathbb{Z}\}$.

Définition 1.19

Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On dit qu'une application φ de G_1 dans G_2 est un morphisme de groupe lorsque

$$\forall x, y \in G_1, \quad \varphi(x \star_1 y) = \varphi(x) \star_2 \varphi(y).$$

Plus précisément, on dit que φ est un

- endomorphisme lorsque $(G_1, \star_1) = (G_2, \star_2)$
- isomorphisme lorsque φ est bijective
- automorphisme lorsque φ est un endomorphisme et un isomorphisme.

Remarque

Arr L'application φ de \mathbb{R} dans \mathbb{U} qui à θ associe $e^{i\theta}$ est un morphisme du groupe $(\mathbb{R},+)$ dans le groupe (\mathbb{U},\times) . L'application exp de \mathbb{R} dans \mathbb{R}_+^* est un isomorphisme du groupe $(\mathbb{R},+)$ dans le groupe (\mathbb{R}_+^*,\times) .

Proposition 1.20

Soit φ un morphisme du groupe de (G_1, \star_1) dans (G_2, \star_2) . Alors

$$\varphi(e_1) = e_2$$

$$\forall x \in G_1, \quad \varphi(x^{-1}) = [\varphi(x)]^{-1}$$

$$\forall x \in G_1, \quad \forall n \in \mathbb{Z}, \quad \varphi(x^n) = [\varphi(x)]^n.$$

Remarque

 \Rightarrow Si φ est un morphisme de groupe et que les lois sont notées additivement, alors

$$\forall x \in G_1, \quad \forall n \in \mathbb{Z}, \quad \varphi(n \cdot x) = n \cdot \varphi(x).$$

Exercice 4

 \Rightarrow Déterminer les endomorphismes, puis les automorphismes de $(\mathbb{Z},+)$.

Proposition 1.21

Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . Alors

- l'image réciproque d'un sous-groupe de G_2 est un sous-groupe de G_1 .
- l'image directe d'un sous-groupe de G_1 est un sous-groupe de G_2 .

Définition 1.22

Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . On appelle noyau de φ et on note Ker φ l'ensemble

$$\operatorname{Ker} \varphi := \{ x \in G_1 \mid \varphi(x) = e_2 \}.$$

C'est un sous-groupe de G_1 .

Proposition 1.23

Un morphisme φ de (G_1, \star_1) dans (G_2, \star_2) est injectif si et seulement si

$$\operatorname{Ker} \varphi = \{e_1\}.$$

Remarque

 \Rightarrow Pour montrer l'injectivité d'un morphisme, montrer que Ker $\varphi = \{e_1\}$ doit devenir un réflexe. Pour cela, il est naturel de procéder par double inclusion. Mais comme l'inclusion $\{e_1\} \subset \operatorname{Ker} \varphi$ est toujours vraie, puisque $\varphi(e_1) = e_2$, il est essentiel de se concentrer sur l'inclusion $\operatorname{Ker} \varphi \subset \{e_1\}$.

Exercice 5

 \Rightarrow Soit (G,\star) un groupe et φ l'application de G dans $\sigma(G)$ définie par

Montrer que φ est bien définie et que c'est un morphisme injectif de groupe. En déduire que (G, \star) est isomorphe à un sous-groupe du groupe de ses permutations.

Proposition 1.24

- La composée de deux morphismes de groupe est un morphisme de groupe.
- La bijection réciproque d'un isomorphisme de groupe est un isomorphisme de groupe.

Proposition 1.25

Si (G,\star) est un groupe, on note $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G. $(\operatorname{Aut}(G),\circ)$ est un groupe.

Définition 1.26

Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On définit la loi \star sur $G_1 \times G_2$ par

$$\forall (x_1, x_2), (y_1, y_2) \in G_1 \times G_2, \quad (x_1, x_2) \star (y_1, y_2) = (x_1 \star_1 y_1, x_2 \star_2 y_2).$$

Alors $(G_1 \times G_2, \star)$ est un groupe d'élément neutre (e_1, e_2) et

$$\forall (x_1, x_2) \in G_1 \times G_2, \quad (x_1, x_2)^{-1} = (x_1^{-1}, x_2^{-1}).$$

Exercice 6

 \Rightarrow Montrer que $(\mathbb{R}_+^* \times \mathbb{U}, \times)$ est isomorphe à (\mathbb{C}^*, \times) .

1.3 Ordre d'un élément

Proposition 1.27

Pour tout $n \in \mathbb{N}$, on pose

$$n\mathbb{Z} \coloneqq \{kn : k \in \mathbb{Z}\}.$$

C'est un sous-groupe de $(\mathbb{Z}, +)$.

Proposition 1.28

Une partie H de \mathbb{Z} est un sous-groupe de $(\mathbb{Z},+)$ si et seulement si il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$. De plus, si tel est le cas, l'entier n est unique.

Remarque

 \Rightarrow Si H est un sous-groupe de $(\mathbb{Z}, +)$ non réduit à $\{0\}$, alors H admet un plus petit élément strictement positif $n \in \mathbb{N}^*$. On a alors $H = n\mathbb{Z}$.

Définition 1.29

Soit (G, \star) un groupe et $x \in G$.

— On dit que x est d'ordre fini lorsqu'il existe $n \in \mathbb{N}^*$ tel que $x^n = e$. Dans ce cas, il existe un unique $\omega \in \mathbb{N}^*$ tel que

$$\forall n \in \mathbb{Z}, \quad x^n = e \quad \Longleftrightarrow \quad \omega | n.$$

On l'appelle ordre de x. C'est le plus petit entier $n \in \mathbb{N}^*$ tel que $x^n = e$.

— Sinon, on dit que x est d'ordre infini. On a alors

$$\forall n \in \mathbb{Z}, \quad x^n = e \iff n = 0.$$

Remarques

- \Rightarrow Dans (\mathbb{C}^*, \times) , si $n \in \mathbb{N}^*$, $\omega := e^{i\frac{2\pi}{n}}$ est d'ordre n.
- \Rightarrow Dans un groupe, e est l'unique élément d'ordre 1.
- ⇒ Dans un groupe fini, tout élément est d'ordre fini.
- \Rightarrow Soit $x \in G$ un élément d'ordre $\omega \in \mathbb{N}^*$. Alors le groupe engendré par x est $\{e, x, x^2, \dots, x^{\omega-1}\}$, ces éléments étant deux à deux distincts. En particulier, l'ordre de x est le cardinal du groupe qu'il engendre.

Théorème 1.30: Théorème de Lagrange

Soit (G, \star) un groupe fini et x un élément de G. Alors l'ordre de x divise le cardinal de G.

Remarques

- \Rightarrow Si (G, \star) est un groupe fini, le cardinal de G est aussi appelé ordre de G. La version faible du théorème de Lagrange nous dit donc que dans un groupe fini, l'ordre d'un élément divise l'ordre du groupe.
- \Rightarrow La version forte du théorème de Lagrange dit que si (G,\star) est un groupe fini et H est un sous-groupe de (G,\star) , alors le cardinal de H divise le cardinal de G. De cette version forte découle la version faible : si $x \in G$, il suffit de remarquer que le cardinal du groupe H engendré par x est l'ordre de x.

Exercice 7

 \Rightarrow Déterminer les sous-groupes finis de (\mathbb{U}, \times) .

2 Groupe symétrique

Groupe symétrique

Définition 2.1

Soit $n \in \mathbb{N}$. On appelle groupe symétrique et on note (S_n, \circ) l'ensemble des bijections de [1, n] dans lui-même muni de la loi de composition.

Remarques

 \Rightarrow Si $\sigma \in \mathcal{F}(\llbracket 1, n \rrbracket, \llbracket 1, n \rrbracket)$, l'application σ est aussi notée

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}.$$

Puisque [1, n] est fini, σ est bijective si et seulement si elle est injective ou surjective. Autrement dit, σ est bijective si et seulement si l'une des deux conditions suivantes est vérifiée :

- 1. Les entiers $\sigma(1), \ldots, \sigma(n)$ sont deux à deux distincts.
- 2. $\{\sigma(1), \ldots, \sigma(n)\} = [1, n]$.
- \Rightarrow Si E est un ensemble fini de cardinal n, l'ensemble des bijections de E muni de la loi de composition est un groupe isomorphe à (S_n, \circ) .

 (S_n, \circ) est un groupe fini de cardinal n!.

Définition 2.3

Soit $n \in \mathbb{N}$.

- Soit $p \in [2, n]$. On appelle cycle de longueur p (ou p-cycle) toute permutation σ tel qu'il existe $x_0, \ldots, x_{p-1} \in [1, n]$ deux à deux distincts tels que

 - On note $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1}).$
- On appelle transposition tout cycle de longueur 2.

Remarques

- \Rightarrow Si $n \ge 3$, (S_n, \circ) n'est pas commutatif.
- \Rightarrow Si σ est une transposition, alors $\sigma^2 = \text{Id}$. On en déduit que $\sigma^{-1} = \sigma$.
- \Rightarrow Si $i \in \mathbb{Z}$ et $p \in \mathbb{N}^*$, on note $i \mod p$, le reste de la division euclidienne de i par p. Si $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ est un p-cycle, on a donc

$$\forall i \in \llbracket 0, p \rrbracket, \quad \sigma(x_i) = x_{i+1 \mod p}.$$

 \Rightarrow Les p-cycles sont des éléments d'ordre p.

Exercices 8

- \Rightarrow Soit τ un p-cycle et $\sigma \in \mathcal{S}_n$. Montrer que $\sigma \tau \sigma^{-1}$ est un p-cycle.
- \Rightarrow Montrer que si $\sigma_1, \sigma_2 \in \mathcal{S}_n$ sont deux *p*-cycles, il existe $\sigma \in \mathcal{S}_n$ tel que $\sigma_2 = \sigma \sigma_1 \sigma^{-1}$.

2.2Décomposition en cycles à supports disjoints

Définition 2.4

Soit $\sigma \in \mathcal{S}_n$. On définit la relation \mathcal{R} sur [1, n] par

$$\forall x, y \in [1, n], \quad x \mathcal{R} y \iff [\exists k \in \mathbb{Z}, \quad \sigma^k(x) = y].$$

Alors \mathcal{R} est une relation d'équivalence. Si $x \in [1, n]$, la classe de x est notée $\mathcal{O}(x)$ et est appelée orbite de x.

Remarques

- \Rightarrow Les orbites étant des classes d'équivalence, elles forment une partition de [1, n].
- \Rightarrow Si $x \in [1, n]$, alors $\mathcal{O}(x) = \{\sigma^k(x) : k \in \mathbb{Z}\}$. De plus, il existe un plus petit $p \in \mathbb{N}^*$ tel que $\sigma^p(x) = x$. On a alors $\mathcal{O}(x) = \{x, \sigma(x), \dots, \sigma^{p-1}(x)\}.$

Définition 2.5

Soit $\sigma \in \mathcal{S}_n$. On appelle support de σ et on note $\mathrm{Supp}(\sigma)$ l'ensemble des $x \in [1, n]$ tels que $\sigma(x) \neq x$.

Remarques

- \Rightarrow Si $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ est un p-cycle, alors $Supp(\sigma) = \{x_0, \dots, x_{p-1}\}.$
- \Rightarrow Le support de σ est stable par σ .
- ⇒ Deux permutations de supports disjoints commutent. Cependant la réciproque est fausse.

Théorème 2.6

Toute permutation s'écrit comme le produit (commutatif) de cycles à supports disjoints. De plus, à l'ordre près, il y a unicité d'une telle décomposition.

Exercices 9

- \Rightarrow Déterminer tous les éléments de S_3 . Quels sont leurs ordres?
- \Rightarrow Quels sont les entiers qui sont l'ordre d'un élément de \mathcal{S}_4 ?
- \Rightarrow Déterminer les éléments d'ordre 2 de S_n ?

2.3 Signature, groupe alterné

Proposition 2.7

Toute permutation $\sigma \in \mathcal{S}_n$ s'écrit comme le produit d'au plus n-1 transpositions.

Remarque

 \Rightarrow Soit $\sigma = (x_0 \quad x_1 \quad \cdots \quad x_{p-1})$ un cycle de longueur p. Alors

$$\sigma = (x_0 \quad x_1)(x_1 \quad x_2) \cdots (x_{p-2} \quad x_{p-1}).$$

Exercice 10

 \Rightarrow Dans S_3 , on pose $\sigma_1 := (1 \quad 3)$ et $\sigma_2 := (1 \quad 2 \quad 3)$. Décomposer $\sigma_1 \sigma_2$ en produit de transpositions de deux manières distinctes.

Définition 2.8

Soit σ une permutation et

$$\sigma = \tau_1 \cdots \tau_m$$
 et $\sigma = \tau'_1 \cdots \tau'_{m'}$

deux décompositions de σ en produit de transpositions. Alors m et m' ont même parité; on dit que σ est paire lorsque ces entiers sont pairs et que σ est *impaire* dans le cas contraire. On définit la *signature* de σ que l'on note $\epsilon(\sigma)$ par

$$\epsilon(\sigma) := \begin{cases} +1 & \text{si } \sigma \text{ est paire} \\ -1 & \text{si } \sigma \text{ est impaire.} \end{cases}$$

Remarques

 \Rightarrow Soit $\sigma \in \mathcal{S}_n$ et $\sigma = \tau_1 \cdots \tau_m$ une décomposition de σ en produit de transpositions. Alors

$$\epsilon(\sigma) = (-1)^m.$$

 \Rightarrow La signature d'un p-cycle est $(-1)^{p-1}$. En particulier, les transpositions sont impaires et les 3-cycles sont pairs.

Proposition 2.9

L'application ϵ de (S_n, \circ) dans $(\{-1, 1\}, \times)$ est un morphisme de groupe.

Remarque

 \Rightarrow Si σ est une permutation, σ et σ^{-1} ont la même signature.

Définition 2.10

On note \mathcal{A}_n l'ensemble des permutations paires. C'est un sous-groupe de (\mathcal{S}_n, \circ) appelé groupe symétrique alterné.

Remarque

 \Rightarrow Si $n \ge 2$, le groupe (\mathcal{A}_n, \circ) est de cardinal n!/2.