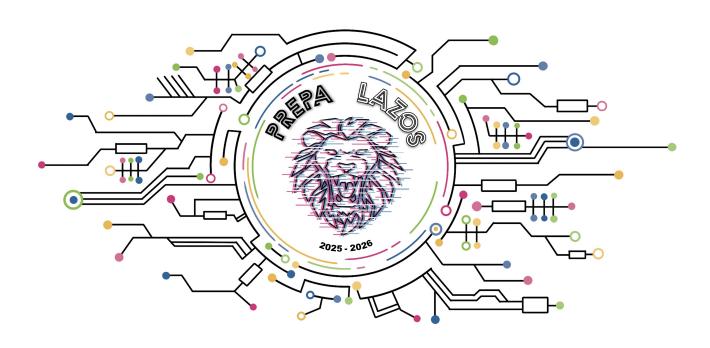
Cours d'Informatique Commune

Sup 3

F. FAYARD



La version de ce document est la 258cef8.

Le logo de la première page a été fait par Mathilde De Matos, élève des Lazaristes.

Merci à tous les élèves des Lazaristes pour leurs remarques et corrections. Nous remercions particulièrement Arthur Buis, Raphaël Des Boscs, Mehdi El Khalfioui, Sacha Evrard, Titouan Francheteau, Hélène Ghaleb, Lyna Hamaïdi, Paul-Antonin Larrieu, Thibault Lecoq, Gabriel Maillard, Cyprien Mas, Alessandro Morales, Antoine Nippert, Martin Palandre, Léa Sulpice et bien entendu Carole Vacherand pour leurs nombreuses corrections apportées.

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/legalcode.fr

La dernière version de ce document ainsi que les sources LATEX sont disponibles à l'adresse https://github.com/FayardProf/Maths-MPSI-MP2I

Vous êtes autorisés à:

- Partager : copier, distribuer et communiquer le matériel par tous les moyens et sous tous formats.
- Adapter : remixer, transformer et créer à partir du matériel pour toute utilisation, y compris commerciale.

Selon les conditions suivantes :

- **Attribution**: Vous devez créditer l'œuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l'œuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l'offrant vous soutient ou soutient la façon dont vous avez utilisé son œuvre.
- Partage dans les mêmes conditions : Dans le cas où vous effectuez un remix, que vous transformez, ou créez à partir du matériel composant l'œuvre originale, vous devez diffuser l'œuvre modifiée dans les mêmes conditions, c'est-à-dire avec la même licence avec laquelle l'œuvre originale a été diffusée.
- Pas de restrictions complémentaires : Vous n'êtes pas autorisé à appliquer des conditions légales ou des mesures techniques qui restreindraient légalement autrui à utiliser l'œuvre dans les conditions décrites par la licence.

Table des matières

Ι	Co	ours		7
1	Val	eur, ty	pe, variable	9
	1.1	Valeur	, type	6
		1.1.1	Nombre entier	Ĉ
		1.1.2	Nombre flottant	11
		1.1.3	Chaine de caractères	14
		1.1.4	Booléen	15
		1.1.5	Tuple	16
	1.2	Progra	mmation impérative	17
		1.2.1	Variable	17
		1.2.2	État du système	18
		1.2.3	Entrée, sortie	19
	1.3	Exerci	ces	20
		1.3.1	Valeur, type	20
		1.3.2	Programmation impérative	21
2	Flo	t d'exé	cution	23
	2.1	Progra	mmation procédurale	23
		2.1.1	Fonction	23
		2.1.2	Liste	24
		2.1.3	Ordre d'évaluation	25
	2.2	Progra	mmation structurée	25
		2.2.1		25
		2.2.2	Boucle for	27
		2.2.3	Réduction	29
		2.2.4	Boucle while	30
		2.2.5	Boucles imbriquées	32
	2.3	Exerci	•	33
		2.3.1		33
		2.3.2	~ ·	33
3	Fon	ction	:	37
	3.1			37
		3.1.1		37
		3.1.2		39
		3.1.3		40
		3.1.4		40
	3.2	Variab		41
		3.2.1		$^{-1}$
		3.2.2		42
		3.2.3		43
	3.3		•	44
	0.0	3.3.1		44
		3.3.2		46
		3.3.2	-	49
	3.4	Exerci		49
	9.1	3.4.1		49
		3.4.1		50
			· · · · · · · · · · · · · · · · · · ·	50

4 TABLE DES MATIÈRES

4	\mathbf{List}	$_{5}$
	4.1	Liste
		4.1.1 Liste
		4.1.2 Parcours de liste
		4.1.3 Création de liste
		4.1.5 Ajout et suppression d'éléments
		4.1.6 Les objets Python
	4.2	Structures séquentielles
		4.2.1 Pile
		4.2.2 File
		4.2.3 File de priorité
		4.2.4 Dictionnaire
	4.3	Exercices
	4.0	
		4.3.2 Structures séquentielles
_	ъ	
5	_	résentation des données 7
	5.1	Les entiers
		5.1.1 Décomposition en base b
		5.1.2 Représentation mémoire des entiers non signés
		5.1.3 Représentation mémoire des entiers signés
	5.2	Les nombres flottants
		5.2.1 Représentation mémoire des flottants
		5.2.2 Problèmes liés à l'arithmétique des nombres flottants
	5.3	Caractères et chaines de caractères
	5.5	
		5.3.1 Codes ASCII et Unicode
		5.3.2 Lecture et écriture dans un fichier
	5.4	Exercices
		5.4.1 Les entiers
		5.4.2 Les nombres flottants
		5.4.3 Caractères et chaines de caractères
6	Con	plexité 9
	6.1	Complexité
		6.1.1 Notation mathématique
		6.1.2 Type de ressource
		6.1.3 Complexité dans le pire des cas
		1
		6.1.4 Complexité en moyenne
		6.1.5 Complexité temporelle et temps de calcul
	6.2	Calcul de complexité temporelle
		6.2.1 Algorithme itératif
		6.2.2 Algorithme récursif
	6.3	Calcul de complexité spatiale
		6.3.1 Algorithme itératif
		6.3.2 Algorithme récursif
	6.4	Exercices
	0.1	6.4.1 Complexité
		6.4.2 Calcul de complexité temporelle
		6.4.3 Calcul de complexité temporelle et spatiale
_	C	
7		rection 11
	7.1	Correction
		7.1.1 Spécification d'une fonction
		7.1.2 Correction partielle, correction totale
	7.2	Algorithme itératif
	-	7.2.1 Terminaison
		7.2.2 Correction
		7.2.3 Exemples fondamentaux
	7.0	•
	7.3	Algorithme récursif
	7.4	Exercices

TABLE DES MATIÈRES 5

		7.4.1 7.4.2 7.4.3	Correction	125 125 126
8	Gra	phe		129
	8.1	Graph	e	129
		8.1.1	Graphe non orienté	129
		8.1.2	Graphe orienté	133
		8.1.3	Graphe pondéré	134
		8.1.4	Représentation d'un graphe	135
	8.2	_	thmes sur les graphes	135
		8.2.1	Parcours générique d'un graphe	135
		8.2.2	Parcours en profondeur	137
		8.2.3 8.2.4	Parcours en largeur	141 143
II	\mathbf{T}	$\mathbf{P}\mathbf{s}$		149
9	Intr	oducti	on, logo	151
10	Alti	mètre,	Syracuse	157
11	\mathbf{Cry}	ptage	de César	161
12	Sud	oku		165
13	Cou	ipe de	somme minimale	167
14	Réc	ursif, l	igne d'horizon	171
15	Cha	ines de	e caractères	173
II	1 I	Janga	ge Python	177

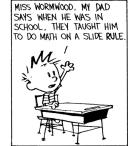
6 TABLE DES MATIÈRES

Première partie

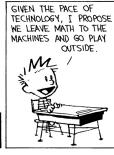
Cours

Chapitre 1

Valeur, type, variable



HE SAYS HE HASNT USED A
SLIDE RULE SINCE, BECAUSE
HE GOT A FIVE-BUCK
CALCULATOR THAT CAN DO
MORE FUNCTIONS THAN HE
COULD FIGURE OUT IF HIS
LIFE DEPENDED ON IT.



1.1 Vale	eur, type
1.1.1	Nombre entier
1.1.2	Nombre flottant
1.1.3	Chaine de caractères
1.1.4	Booléen
1.1.5	Tuple
1.2 Prog	grammation impérative
1.2.1	Variable
1.2.2	État du système
1.2.3	Entrée, sortie
1.3 Exe	rcices
1.3.1	Valeur, type
1.3.2	Programmation impérative

1.1 Valeur, type

Le langage Python manipule des valeurs de différents types. Nous rencontrerons d'abord les types numériques : les entiers ainsi que les nombres flottants que l'on utilise pour représenter les réels. Nous verrons ensuite les chaines de caractères, les booléens et les tuples.

1.1.1 Nombre entier

Nous utiliserons Python le plus souvent dans ce qu'on appelle le shell ou la boucle interactive. Ce mode est aussi appelé « Repl » pour : Read, Evaluate, Print, Loop. Autrement dit, lorsqu'on entre une expression, Python la lit, l'évalue, affiche le résultat, et est prêt pour l'interaction suivante.

On écrit les entiers de manière naturelle. D'une manière générale, on obtient le type d'une valeur grâce à la fonction type.

```
In [1]: 42
2 Out[1]: 42
3
4 In [2]: type(42)
5 Out[2]: int
```

Le type des entiers est donc int. Les opérateurs usuels d'addition « + », de soustraction « - », de multiplication « * » et d'exponentiation « ** » sont disponibles pour créer des *expressions* qui sont *évaluées* par l'interpréteur. Ces opérateurs possèdent différents niveaux de priorité. L'exponentiation est prioritaire sur la multiplication. L'addition et la soustraction ont la priorité la plus basse.

```
1 In [3]: 2 + 3 * 5
2 Out[3]: 17
3
4 In [4]: -1 + 2 ** 8
5 Out[4]: 255
```

On utilise les parenthèses pour grouper différentes sous-expressions lorsque les calculs que l'on souhaite effectuer diffèrent de ceux fixés par les règles de priorité.

```
1 In [5]: (2 + 3) * 5
2 Out[5]: 25
```

Les différentes règles de priorité sont parfois subtiles. Il est donc souhaitable, pour des raisons de lisibilité, d'ajouter des parenthèses dès lors que l'évaluation de notre expression repose sur leur connaissance fine. N'oubliez jamais qu'un programme est écrit pour être lu non seulement par un ordinateur, mais aussi par des humains, qu'ils soient programmeurs ou correcteurs de concours. Par exemple, on n'écrira pas 2 ** 2 ** 3 mais plutôt l'une des deux expressions suivantes :

```
In [6]: (2 ** 2) ** 3
2 Out[6]: 64
3
4 In [7]: 2 ** (2 ** 3)
5 Out[7]: 256
```

Ces opérateurs sont des opérateurs binaires : ils nécessitent deux arguments. Le Pep8, qui fixe les règles de bon usage en Python, recommande de mettre un espace de part et d'autre de tels opérateurs. Cependant, lorsqu'on construit des expressions mélangeant des opérateurs ayant différents niveaux de priorité, il est parfois plus lisible d'omettre cet espace autour des opérateurs ayant la priorité la plus forte. Par exemple, on écrira 2**10 - 1.

Le symbole « - », utilisé comme opérateur binaire de soustraction, est aussi utilisé pour la négation. Dans ce cas, c'est un opérateur *unaire* ne nécessitant qu'une opérande.

```
1 In [8]: -2 * 3
2 Out[8]: -6
```

Contrairement à ce qui se passe dans la plupart des autres langages comme le C ou OCaml, Python peut représenter des nombres aussi grands que l'on souhaite. Prenons l'exemple du n-ième nombre de Mersenne définit par $M_n := 2^n - 1$. Il est courant de chercher des nombres premiers parmi ces entiers. Le dixième nombre de Mersenne qui est premier est M_{89} et son calcul ne pose aucun problème à Python.

```
l In [9]: 2**89 - 1
2 Out[9]: 618970019642690137449562111
```

Python offre deux types de division. Commençons par la division entière. Rappelons le théorème de la division euclidienne sur $\mathbb Z$:

1.1. VALEUR, TYPE

Proposition 1.1.1

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q, r) \in \mathbb{Z}^2$ tel que

$$a = qb + r$$
 et $0 \le r < b$.

q est appelé quotient de la division euclidienne de a par b, et r son reste.

Par exemple $7 = 2 \times 3 + 1$, donc 2 est le quotient de la division euclidienne de 7 par 3 et son reste est 1. De même $-7 = (-3) \times 3 + 2$, donc -3 est le quotient de la division euclidienne de -7 par 3 et son reste est 2. En Python, on obtient le quotient de la division euclidienne de a par b avec a // b et son reste avec a % b.

```
In [10]: -7 // 3
2 Out[10]: -3
3
4 In [11]: -7 % 3
5 Out[11]: 2
```

La division par 0 est une erreur et lève ce qu'on appelle une *exception*. Même s'il est possible de rattraper les exceptions, nous ne le ferons pas dans ce cours et une division par 0 aura pour effet de produire l'erreur suivante :

```
1 In [12]: 1 // 0
2 ZeroDivisionError: integer division or modulo by zero
```

Python offre aussi une division plus classique, notée /. Elle produit une valeur d'un type différent : celui des nombres flottants.

```
1 In [13]: 3 / 2
2 Out[13]: 1.5
3
4 In [14]: type(1.5)
5 Out[14]: float
```

1.1.2 Nombre flottant

Les nombres flottants sont utilisés pour représenter les nombres réels. Comme tous les langages de programmation, Python utilise le « . » comme séparateur décimal. Pour calculer une valeur approchée de la circonférence d'un cercle de diamètre 2, on entre donc :

```
1 In [1]: 3.14 * 2.0
2 Out[1]: 6.28
```

Commençons par remarquer que les opérateurs +, -, *, / et ** sont disponibles pour les nombres flottants. On peut par ailleurs mélanger flottants et entiers dans les calculs. Comme pour les entiers, la division par 0.0 lève une exception.

Pour simplifier l'écriture de grands et de petits nombres, on utilise la notation scientifique. Ainsi, l'âge de l'univers étant estimé à 13.8 milliards d'années et la vitesse de la lumière étant de l'ordre de 3.0×10^8 mètres par seconde, le calcul suivant nous montre qu'il est impossible d'observer des endroits de l'univers à une distance supérieure à 1.31×10^{26} mètres de la terre :

```
1 In [2]: 13.8e9 * 365 * 24 * 60 * 60 * 3e8
2 Out[2]: 1.3055904e+26
```

Pour le calcul de la circonférence du cercle de diamètre 2, on a approché plus haut π par 3.14. On pourrait bien sûr utiliser une approximation plus précise comme 3.14159,

```
1 In [3]: 2 * 3.14159
2 Out[3]: 6.28318
```

mais la précision disponible avec Python n'est pas illimitée. En première approximation, on peut considérer que Python ne peut travailler qu'avec des nombres flottants ayant une précision de 16 chiffres significatifs : tout excès de précision est ignoré.

```
1 In [4]: 1234567890.12345678 - 1234567890.1234567
2 Out[4]: 0.0
```

Le premier nombre possède 18 chiffres significatifs alors que le second en possède 17. Avant même d'effectuer la soustraction, les deux nombres sont arrondis au même nombre : le résultat final est donc nul. La situation est en fait plus complexe que cela, car tout comme les entiers, les flottants ne sont pas représentés en interne en base 10 mais en base 2. Ne soyez donc pas surpris si, en faisant vos propres essais, vous avez parfois l'impression que Python garde 16 chiffres significatifs, parfois 17.

Pour les mêmes raisons, le résultat de chaque opération arithmétique est arrondi. Cela conduit à des résultats surprenants comme le calcul suivant qui n'est pas égal à 10^{-16} comme on pourrait s'y attendre.

```
1 In [5]: (1.0 + 1.0e-16) - 1.0
2 Out[5]: 0.0
```

En effet, $1.0 + 10^{-16}$ possède 17 chiffres significatifs. Il est arrondi à 1.0 avant d'effectuer la soustraction qui donne donc 0. Comme les flottants sont stockés en base 2 et non en base 10, même les nombres décimaux les plus simples ne sont pas représentables exactement. On peut donc avoir des résultats surprenants :

```
1 In [6]: 0.1 + 0.2 - 0.3
2 Out[6]: 5.551115123125783e-17
```

Vous comprendrez pourquoi les logiciels de comptabilité ne travaillent pas en interne avec des nombres flottants. Ils ont cependant de nombreuses qualités et sont utilisés en simulation numérique ainsi qu'en intelligence artificielle. On n'oubliera cependant jamais que des arrondis sont effectués à chaque opération et nous verrons que les erreurs accumulées peuvent parfois devenir significatives et fausser complètement un résultat.

Lorsqu'on mélange des entiers et des flottants dans une expression, une conversion préalable des entiers vers les flottants est réalisée automatiquement. Cette conversion automatique est un choix raisonnable, car contrairement aux nombres décimaux, les nombres entiers qui ne sont pas trop grands (disons, ceux qui s'écrivent avec moins de 16 chiffres) sont représentables de manière exacte par des flottants. La conversion des flottants vers les entiers est aussi possible. Cependant, comme elle fait perdre de l'information, il faut la demander explicitement en utilisant la fonction int. Cette fonction arrondit un flottant au premier entier rencontré lorsqu'on se rapproche de 0.

```
1 In [7]: int(2.718)
2 Out[7]: 2
3
4 In [8]: int(-2.718)
5 Out[8]: -2
```

De manière générale, chaque type numérique possède une fonction associée pour forcer une conversion.

Les fonctions usuelles sont disponibles dans la bibliothèque math. On y trouve par exemple la fonction floor qui, pour chaque nombre x, renvoie sa partie entière dont on rappelle la définition ci-dessous.

```
Proposition 1.1.2 Soit x \in \mathbb{R}. Il existe un unique n \in \mathbb{Z} tel que n \leqslant x < n+1. Cet entier est appelé partie entière de x et est noté \lfloor x \rfloor.
```

Pour charger la bibliothèque math, on utilise l'instruction suivante :

1.1. VALEUR, TYPE

```
1 In [9]: import math
2
3 In [10]: math.floor(2.718)
4 Out[10]: 2
5
6 In [11]: math.floor(-2.718)
7 Out[11]: -3
```

De même, on définit la partie entière supérieure d'un réel.

```
Proposition 1.1.3 Soit x \in \mathbb{R}. Il existe un unique n \in \mathbb{Z} tel que n-1 < x \leqslant n. Cet entier est appelé partie entière supérieure de x et est noté \lceil x \rceil.
```

La fonction ceil de la même bibliothèque permet d'y accéder.

```
1 In [12]: math.ceil(2.718)
2 Out[12]: 3
3
4 In [13]: math.ceil(-2.718)
5 Out[13]: -2
```

On peut calculer la racine carrée d'un nombre avec la fonction sqrt, abréviation de « square root ». Les autres fonctions usuelles sont aussi disponibles.

```
In [14]: math.sqrt(2.0)
2 Out[14]: 1.4142135623730951
3
4 In [15]: math.exp(1.0)
5 Out[15]: 2.718281828459045
```

Le logarithme naturel ln (log en Python), le logarithme en base 10 (log10) et le logarithme en base 2 (log2) sont aussi disponibles. Bien sûr, les fonctions trigonométriques circulaires cos, sin et tan sont présentes, tout comme la constante π .

```
1 In [16]: math.cos(math.pi / 17)
2 Out[16]: 0.9829730996839018
```

La principale devise de Python est « batteries included ». Autrement dit, de nombreuses bibliothèques (« libraries » en anglais), sont disponibles. Nous venons d'utiliser notre première bibliothèque : le module math. Il existe de nombreuses manières de les rendre accessibles. La plus simple est d'écrire import suivi du nom de la bibliothèque. Les fonctions et constantes seront alors disponibles, préfixées par le nom du module. Si vous souhaitez seulement en utiliser certaines sans avoir à taper à chaque fois le nom du module, vous pouvez entrer la commande :

```
In [17]: from math import cos, pi

In [18]: cos(pi / 17)

Unt[18]: 0.9829730996839018
```

Il est d'ailleurs possible d'importer tous les composants du module math avec la commande

```
1 In [19]: from math import *
```

C'est cependant une opération dangereuse, car si on importe ainsi plusieurs modules, on ne sait rapidement plus d'où viennent nos fonctions. En pratique, il est préférable d'utiliser import math, quitte à renommer le module en un nom

plus court. On utilise pour cela la commande :

1.1.3 Chaine de caractères

Python nous permet de travailler avec du texte. Pour cela, on utilise des chaines de caractères que l'on encadre en utilisant soit des « " », soit des « ' ».

```
In [1]: "hello, world"

2 Out[1]: 'Hello, world'

3 
4 In [2]: 'Ça dépend, ça dépasse.'

5 Out[2]: 'Ça dépend, ça dépasse.'
```

Python permet d'utiliser des accents dans les chaines de caractères. Vous pouvez même utiliser des caractères espagnols, allemands, russes, hébreux, arabes ou chinois. Bref, tous les caractères UNICODE sont supportés. De nombreux caractères « spéciaux » existent. Par exemple, le retour à la ligne est un « caractère » que l'on obtient en écrivant « \n ». De même, la tabulation est un caractère que l'on obtient en écrivant « \t ». La plupart des éditeurs de texte affichent la tabulation en la remplaçant par 2 ou 4 espaces, mais il est important d'être conscient que dans les fichiers textes, c'est un caractère à part entière. Comme il est difficile de le distinguer d'une succession d'espaces, on convient en général de ne pas l'utiliser : beaucoup d'éditeurs de texte insèrent des espaces plutôt qu'un caractère de tabulation lorsque l'on utilise la touche « TAB » de notre clavier. Enfin, si vous souhaitez utiliser des guillemets dans une chaine de caractères et que votre choix du délimiteur vous en empêche, vous pouvez l'insérer avec « \" » ou « \ ' ». Par exemple :

```
In [3]: "What do you mean \"ew\"? I don't like Spam!"

Out[3]: "What do you mean "ew"? I don't like Spam!"
```

Il est possible d'obtenir la longueur d'une chaine de caractères en utilisant la fonction len.

```
1 In [4]: len("hello, world")
2 Out[4]: 12
```

Les chaines de caractères ont leur propre type : le type str.

```
1 In [5]: type("Il suffit pas d'y dire, y faut aussi y faire.")
2 Out[5]: str
```

On ne confondra pas les chaines de caractères et les entiers. En particulier, si on essaie d'ajouter un entier à une chaine de caractères en écrivant « 2 + "2" », on obtient une erreur de type. Cependant, on peut utiliser le symbole + entre deux chaines de caractères, ce qui a pour effet de les concaténer :

```
1 In [6]: "Tic" + "Tac"
2 Out[6]: 'TicTac'
```

De la même manière, il est possible de multiplier une chaine de caractères par un entier.

```
1 In [7]: "G" + 10 * "o" + "al"
2 Out[7]: 'Gooooooooooal'
```

On peut convertir une chaine de caractères en un entier ou un nombre flottant. C'est une conversion de type et il suffit pour cela d'appliquer la fonction portant le nom du type désiré à notre chaine.

1.1. VALEUR, TYPE

```
1 In [8]: int("2")
2 Out[8]: 2
3
4 In [9]: float("13.1")
5 Out[9]: 13.1
6
7 In [10]: int("2") * float("13.1")
8 Out[10]: 26.2
```

Si la chaine de caractères ne peut être interprétée comme une valeur du type demandée, une exception sera levée. La conversion inverse est possible avec la fonction str :

```
In [11]: "Fahrenheit " + str(45) + str(1)
2 Out[11]: 'Fahrenheit 451'
```

Le standard Ascii associe une valeur entre 0 et 127 à chacun des caractères les plus courants. Le tableau ci-dessous donne ces valeurs, les cases grisées représentant des caractères non imprimables. Par exemple, le caractère A est associé à la valeur 65.

	0	1	2	3	4	5	6	7	8	9
0										
10										
20										
30				!	"	#	\$	%	&	,
40	()	*	+	,	-		/	0	1
50	2	3	4	5	6	7	8	9	:	;
60	<	=	>	?	@	A	В	С	D	E
70	F	G	Н	I	J	K	L	M	N	О
80	P	Q	R	S	Т	U	V	W	X	Y
90	Z	[\]	^	_	`	a	b	С
100	d	е	f	g	h	i	j	k	1	m
110	n	О	р	q	r	S	t	u	v	w
120	х	У	\mathbf{z}	{		}	~			

Pour obtenir cet entier, on utilise la fonction ord.

```
In [12]: ord('A')
2 Out[12]: 65
```

On peut obtenir un caractère à partir de son code Ascii grâce à la fonction chr.

```
1 In [13]: chr(65)
2 Out[13]: 'A'
```

1.1.4 Booléen

Python possède un type booléen qui n'a que deux valeurs distinctes : True et False.

```
1 In [1]: True
2 Out[1]: True
3
4 In [2]: type(True)
5 Out[2]: bool
```

Les opérateurs logiques usuels « et », « ou » et « non » sont disponibles. On remarquera que le « ou » est bien le ou inclusif, comme en mathématiques.

```
1 In [3]: True and True
2 Out[3]: True
3
4 In [4]: True and False
5 Out[4]: False
6
7 In [5]: True or True
8 Out[5]: True
9
10 In [6]: not True
11 Out[6]: False
```

Pour savoir si deux valeurs sont égales, on utilise le symbole « == ».

```
1 In [7]: 1 + 1 == 2
2 Out[7]: True
```

La valeur renvoyée par un test d'égalité est un booléen. Attention à ne jamais utiliser de test d'égalité entre deux flottants, car les arrondis auxquels ils sont sujets font que certains résultats sont surprenants!

```
1 In [8]: 0.1 + 0.2 == 0.3
2 Out[8]: False
```

En général, deux valeurs de types différents ne sont pas égales.

```
1 In [9]: 2 == "2"
2 Out[9]: False
```

Les opérateurs !=, <, >, <=, >= sont aussi disponibles.

```
In [10]: 3 <= 3.14 and 3.14 <= 4
2 Out[10]: True
```

Pour la comparaison des chaines de caractères, l'ordre utilisé est l'ordre lexicographique, chaque caractère étant ordonné dans l'ordre de la table ASCII/UNICODE.

```
1 In [11]: "OL" > "OM"
2 Out[11]: False
```

Faites attention à l'ordre de ces caractères. Les minuscules sont bien évidemment dans l'ordre alphabétique, tout comme les majuscules, mais la lettre « Z » est avant la lettre « a » et donc de manière surprenante "Zorro" < "algèbre".

Exercice 1

➡ En utilisant le tableau ASCII, classer ces chaines de caractère dans l'ordre lexicographique : "9", "34", "Maison", "1a" et "laisser".

1.1.5 Tuple

Afin de grouper plusieurs valeurs, Python propose un type appelé tuple.

```
1 In [1]: (1.0, 2.0)
2 Out[1]: (1.0, 2.0)
3
4 In [2]: "Teddy", "Riner", 1989
5 Out[2]: ("Teddy", "Riner", 1989)
6
7 In [3]: type((2.0, 1.0))
8 Out[3]: tuple
```

Les parenthèses regroupant ces valeurs sont optionnelles. Il est courant d'utiliser des tuples pour grouper des valeurs n'ayant pas le même type, comme dans notre second exemple.

1.2 Programmation impérative

1.2.1 Variable

Les valeurs déjà calculées peuvent être gardées en mémoire afin de les utiliser plus tard. Pour cela, on utilise des variables. Les types que nous avons vus jusqu'ici seront plus tard décrits comme immuables et lorsqu'on travaille avec de tels types, une variable peut être conceptualisée par une boite portant un nom et contenant une valeur. Afin de stocker une valeur dans une boite, on utilise le symbole d'affectation « = ».

```
ı In [1]: a = 6
```

À gauche du symbole d'affectation, on place le nom de la boite qui doit être utilisée. À droite, on doit trouver une expression qui sera évaluée en une valeur. Cette valeur sera alors stockée dans la boite.

On accède ensuite à la valeur mémorisée en utilisant le nom de la variable. Lors de l'évaluation de chaque expression, les noms de variables sont remplacés par les valeurs qu'elles contiennent.

```
1 In [2]: a * (a + 1)
2 Out[2]: 42
```

Exercice 2

- ⇒ Dans cet exercice on s'interdit d'utiliser l'exponentiation « ** ».
 - 1. Montrer que l'on peut calculer a^8 avec 3 multiplications.
 - 2. Donner une manière de calculer a^7 avec 4 multiplications.

Une fois qu'une variable est définie, il est possible de la redéfinir en utilisant une nouvelle valeur.

```
1 In [3]: a = 7
2
3 In [4]: a = a + 1
4
5 In [5]: a
6 Out[5]: 8
```

Pour l'entrée a=a+1, le membre de droite est d'abord évalué pour produire la valeur 8. Cette valeur est ensuite stockée dans la variable a. L'ancienne valeur est « écrasée » et il n'est plus possible d'y accéder. Ce type d'instruction nous rappelle que le symbole d'affectation est dissymétrique, contrairement au symbole d'égalité utilisé en mathématiques. En particulier, l'instruction « a+1=a » n'a aucun sens et sera signalée par Python comme une erreur. Remarquons que c'est bien une valeur qui est stockée dans une variable. En particulier, si l'on définit « b=a » et que l'on change ensuite la valeur de a, celle de b reste inchangée.

Exercice 3

 \Rightarrow La méthode de Héron est une méthode historique pour obtenir une valeur approchée de la racine carrée d'un nombre a > 0. Pour cela, on définit la suite (u_n) par

$$u_0 \coloneqq a, \quad \text{et} \quad \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq \frac{u_n + \frac{a}{u_n}}{2}.$$

Déterminer la plus petite valeur de n pour laquelle la précision sur les nombres flottants ne permet plus de distinguer u_n de u_{n+1} lors du calcul de $\sqrt{2}$.

Python est un langage de programmation à *typage dynamique* : une même variable peut à un moment donné stocker un entier et plus tard une chaine de caractères. Le type d'une variable, c'est-à-dire le type de la valeur stockée par cette variable est donc autorisé à changer lors de l'exécution d'un programme. Cette manière de programmer rend cependant les programmes plus difficiles à lire et nous éviterons de le faire.

Pour les noms de variables, nous nous limiterons aux noms composés de lettres minuscules (a-z) et majuscules (A-Z), ainsi qu'au caractère « tiret du bas » ou « underscore » (_) disponible sur la touche 8 des claviers français. L'utilisation de chiffres (0-9) à la fin d'un nom est autorisée. On évitera d'utiliser les accents dans les noms de variables. Choisir judicieusement le nom de ses variables est un art qu'il est important de cultiver. Les noms de variables courts ont l'avantage d'être rapides à taper et à lire. On les utilisera donc pour stocker des valeurs que nous utiliserons souvent. Les noms de variables longs ont l'avantage d'être plus descriptifs. On les utilisera donc pour faire référence à des valeurs que nous utiliserons plus rarement. Pour des noms de variables composés de plusieurs mots, on utilise souvent un underscore comme dans nb_eleves ou une lettre majuscule comme dans nbEleves.

1.2.2 État du système

Contrairement aux expressions dont la finalité est de produire une valeur, une affectation a pour effet de changer l'état des variables. On dit qu'elle agit par effet de bord. Pour représenter l'état du système, nous utiliserons la notation suivante {a: 2, b: 7}. Elle signale que la variable a contient la valeur 2 tandis que b contient la valeur 7. La programmation impérative consiste à écrire une succession d'instructions pour changer l'état de la machine. Le langage machine, qui est utilisé par les processeurs, fonctionne de cette manière. C'est une des raisons pour lesquelles ce style est central dans de nombreux langages de programmation. C'est le cas pour Python, et c'est un style que nous adopterons souvent dans ce cours. Afin de visualiser l'état dans lequel se trouve la machine, on le décrira sur une ligne de commentaire. Ces lignes commencent par le caractère # et sont ignorées par Python.

Si par exemple les variables a et b contiennent respectivement 2 et 7, les instructions suivantes modifient l'état de la machine comme suit :

```
1 # etat {a: 2, b: 7}
2 In [1]: a = b
3 In [2]: b = a
4 # etat {a: 7, b: 7}
```

En particulier, ces deux instructions n'ont pas eu pour effet d'échanger le contenu des variables a et b. La première instruction a eu pour effet d'écraser la valeur contenue dans a qui est alors définitivement perdue. Si on possède un verre d'eau et un verre de vin, le meilleur moyen pour échanger le contenu de ces verres est d'utiliser un troisième verre. Pour échanger deux variables, on peut donc utiliser la séquence d'instructions suivante :

```
1 # etat {a: 2, b: 7}
2 In [1]: c = a
3 In [2]: a = b
4 In [3]: b = c
5 # etat {a: 7, b: 2, c: 2}
```

Notons que Python permet d'utiliser les tuple pour effectuer des affectations « simultanées ». Par exemple après l'instruction

```
n [4]: a, b = 7, 2
```

a contient 7 et b contient 2. Puisque l'expression de droite est évaluée avant l'affectation, cette construction est très utile pour échanger le contenu de deux variables.

```
1 In [5]: a, b
2 Out[5]: (7, 2)
3
4 In [6]: a, b = b, a
5
6 In [7]: a, b
7 Out[7]: (2, 7)
```

En pratique, on réservera ces affectations simultanées aux cas où plusieurs affectations les unes à la suite des autres ne permettent pas d'obtenir un résultat similaire.

Notons qu'il est possible de supprimer une variable avec l'instruction del, mais nous nous contenterons d'ignorer les variables dont nous n'avons plus l'utilité.

On notera parfois $\mathcal{E}_0, \mathcal{E}_1, \dots$ l'état du système à différentes étapes de l'exécution de notre code. On utilisera aussi la convention suivante : si a est une variable, a_k sera la valeur contenue par cette dernière quand le système est dans l'état \mathcal{E}_k . Par exemple

```
1 # etat0 {a: a0, b: b0}
2 In [8]: a = a + b
3 # etat1 {a: a0 + b0, b: b0}
```

signifie qu'après notre affectation $a_1 = a_0 + b_0$ et $b_1 = b_0$.

1.2.3 Entrée, sortie

Le langage Python permet d'interagir avec l'utilisateur en demandant d'entrer des valeurs avec lesquelles il va travailler puis en affichant les résultats de son calcul.

Pour afficher une valeur, on utilise la fonction print. On l'utilise pour afficher des chaines de caractères, mais aussi des entiers ou des nombres flottants.

```
1 In [1]: print("hello, world")
2 hello, world
3
4 In [2]: print(2**10)
5 1024
```

La fonction print travaille par effet de bord. Elle a pour effet de changer l'état du système, à savoir ce qui est affiché par la console de l'ordinateur. Il est essentiel de bien faire la différence entre l'expression 2**10 qui s'évalue en 1024 et l'appel print(2**10) qui affiche 1024 sur la console. Cet appel renvoie None, l'unique valeur du type NoneType qui est renvoyée par les fonctions travaillant par effet de bord. On ne voit pas cette valeur sur une ligne Out car le shell a pour habitude de ne jamais l'afficher. La différence peut paraître subtile lorsque l'on travaille avec Python en mode interactif mais elle existe bien :

```
In [3]: 2**10
2 Out[3]: 1024
3
4 In [4]: print(2**10)
5 1024
```

La fonction print peut être utilisée avec plusieurs valeurs, séparées par des virgules : elles sont affichées sur une même ligne, les unes à la suite des autres.

```
In [5]: nb_eleves = 43

In [6]: print("Il y a", nb_eleves, "élèves dans la classe.")

Il y a 43 élèves dans la classe.
```

Par défaut, un retour à la ligne est automatiquement ajouté après chaque appel à **print**. Pour éviter cela, on peut utiliser l'option **end** et remplacer le caractère « \n », par la chaine de votre choix. Le plus courant est d'utiliser une chaine vide.

```
1 In [7]: print("hello, ", end="")
2    ...: print("world")
3 hello, world
```

Enfin, lorsque vous voulez afficher plusieurs valeurs sur une même ligne en les séparant par des virgules, Python va ajouter un espace entre chaque valeur. Cela peut être utile, mais dans les cas où vous ne le souhaitez pas, vous pouvez construire les chaines de caractères à la main.

```
1 In [8]: n = 3
2
3 In [9]: print("Sup" + str(n) + " rocks!")
4 Sup3 rocks!
```

La fonction input permet quant à elle de demander des valeurs à l'utilisateur. Quelle que soit la valeur attendue, c'est sous la forme d'une chaine de caractères que Python la renvoie au programmeur. Il convient donc d'effectuer explicitement une conversion lorsque l'on souhaite une valeur d'un autre type.

```
In [10]: nom = input("Quel est votre nom ? ")

Quel est votre nom ? Léon Marchand

In [11]: entree = input(nom + ", quelle est votre année de naissance ? ")

Léon Marchand, quelle est votre année de naissance ? 2002

In [12]: annee = int(entree)

In [13]: print("Vous aurez", 2028 - annee, "ans pour les jeux de Los Angeles.")

Vous aurez 26 ans pour les jeux de Los Angeles.
```

Bien qu'elle renvoie une valeur, on dit aussi que la fonction input travaille par effet de bord, car elle attend une entrée de l'utilisateur. C'est la seule fois dans ce cours où vous verrez cette fonction. Nous sommes en 2024, les téléphones ont des interfaces tactiles et la reconnaissance vocale est plutôt efficace. Tout cela pour vous dire qu'il vaut mieux laisser gérer l'interface utilisateur par des personnes maitrisant ces technologies. Comme nous travaillerons en mode interactif, print et input nous seront de toute façon le plus souvent inutiles et nous vous demandons de les laisser de côté, sauf si on vous demande explicitement de les utiliser.

1.3 Exercices

1.3.1 Valeur, type

Nombre entier

Exercice 1: Évaluer une expression

Déterminer la valeur et le type de chacune des expressions suivantes :

```
In [1]: 5 * 2 + 1 ** 2
In [2]: 5 * (2 + 1) ** 2
In [3]: -16 // 5
In [4]: 8 / 2
```

Exercice 2: Les oeufs

On suppose que la variable n contient le nombre d'oeufs dont on dispose et on souhaite calculer le nombre b de boites de 6 oeufs nécessaires à leur transport.

- 1. Pour quelles valeurs de n l'expression n // 6 donne-t-elle la bonne réponse?
- 2. Trouver une expression donnant la bonne réponse.

1.3. EXERCICES 21

Nombre flottant

Exercice 3: Évaluer une expression

Déterminer la valeur et le type de chacune des expressions suivantes, d'abord sans utiliser Python, puis en l'utilisant.

```
In [1]: 2 ** 3.0 + 4
In [2]: int(8.6) + 2
In [3]: float(2) ** 3
```

Chaine de caractères

Booléen

Exercice 4: Année bissextile

Une année est bissextile dans les deux cas suivants.

- Si l'année est divisible par 4 et non divisible par 100.
- Si l'année est divisible par 400.

On suppose que la variable n contient l'année qui nous intéresse. Donner une expression Python qui s'évalue en True si l'année est bissextile et en False sinon.

Tuple

1.3.2 Programmation impérative

Variable

État du système

Exercice 5: Suites d'affectations

Quelles sont les valeurs de x, y après les instructions suivantes?

```
In [1]: x = 23

2 In [2]: y = 18

3 In [3]: x = x + y

4 In [4]: y = x - y

5 In [5]: x = x - y
```

Exercice 6: Quésako

On suppose que les variables a et b contiennent initialement les valeurs a_0 et b_0 . Quelles sont les valeurs contenues par a et b après les instructions suivantes?

```
1 In [1]: a = a + b
2 In [2]: b = a - b
3 In [3]: a = a - b
```

Entrée, sortie

Exercice 7: Entrée, sortie

Donner l'état du shell après chacune des commandes suivantes.

```
1 In [1]: 1 + 2
2 In [2]: print(1 + 2)
3 In [3]: print(print(1 + 2))
4 In [4]: print(1) + 2
5 In [5]: print(1) + print(2)
```

Chapitre 2

Flot d'exécution

	2.1.1	Fonction
	2.1.2	Liste
	2.1.3	Ordre d'évaluation
2.2	Prog	grammation structurée
	2.2.1	Branchement
	2.2.2	Boucle for
	2.2.3	Réduction
	2.2.4	Boucle while
	2.2.5	Boucles imbriquées
2.3	Exe	rcices
	2.3.1	Programmation procédurale
	2.3.2	Programmation structurée

2.1 Programmation procédurale

La programmation procédurale consiste à découper un programme en fonctions ou procédures élémentaires afin de rendre le programme modulaire. Chaque fonction a une responsabilité bien déterminée. Cela permet la réutilisation du programme ainsi défini : on dit que l'on factorise le code. Ainsi, il est plus facile de faire évoluer notre programme en remplaçant par exemple une fonction par une version plus efficace.

2.1.1 Fonction

Dans sa forme la plus simple, une fonction prend en entrée une valeur et en renvoie une autre. Par exemple, la fonction

```
1 def carre(n):
2    return n * n
```

prend en entrée la valeur n et renvoie n^2 . On utilise ensuite la fonction de la manière suivante :

```
1 In [1]: carre(3)
2 Out[1]: 9
```

Bien entendu, il est possible d'utiliser le résultat renvoyé par une fonction à l'intérieur d'une expression.

```
1 In [2]: carre(3) + carre(4)
2 Out[2]: 25
```

Une fonction peut prendre en entrée plusieurs paramètres :

```
1 def somme(a, b):
2 return a + b
```

```
1 In [3]: somme(3, 5)
2 Out[3]: 8
```

Les fonctions que nous avons vues jusqu'à présent sont dites *pures*, dans la mesure où elles ne changent pas l'état du système.

Une fonction peut aussi ne rien renvoyer (en pratique elles renvoient None, mais c'est un détail que nous pouvons ignorer pour le moment). Elle fonctionne alors par effet de bord; on dit que c'est une *procédure*. On peut par exemple afficher du texte sur la console :

```
1 def greetings(nom):
2  print("Hello", nom)
```

```
In [4]: greetings("Paul")
Hello Paul
```

2.1.2 Liste

Bien que les listes n'aient pas de lien avec la programmation procédurale, nous les introduisons ici afin d'avoir des exemples plus intéressants dans la suite de ce chapitre. Une liste est une succession ordonnée de valeurs. Pour définir une liste, on énumère ses éléments entre crochets, en les séparant par des virgules. Les listes ont leur type list et il est possible de connaître leur longueur à l'aide de la fonction len.

```
1 In [1]: note = [9, 10, 14]
2
3 In [2]: type(note)
4 Out[2]: list
5
6 In [3]: len(note)
7 Out[3]: 3
```

Si t est une liste de longueur n, ses valeurs sont indexées de 0 à n-1 et il est possible d'accéder directement à la valeur d'indice k grâce à t[k]. On peut imaginer que ses valeurs sont stockées dans un tableau les unes à la suite des autres : une liste peut ainsi avoir un accès direct à son k-ième élément.

```
1 In [4]: note[0]
2 Out[4]: 9
3
4 In [5]: moyenne = (note[0] + note[1] + note[2]) / len(note)
5
6 In [6]: moyenne
7 Out[6]: 11.0
```

Si l'on dépasse les bornes d'une liste, Python lève l'exception « list index out of range ». Par exemple note[3] va lever une telle exception. Même s'il est possible d'avoir des listes contenant des objets de types différents, en pratique, nous n'utiliserons que des listes constituées d'objets du même type.

Notons que les chaines de caractères ont un comportement comparable aux listes : si s est une chaine de caractères, s[k] permet d'accèder au caractère d'indice k. À noter que contrairement à de nombreux langages, il n'existe pas de type « caractère » et s[k] est tout simplement une chaine de caractères de longueur 1.

Les listes peuvent contenir d'autres listes. Par exemple, pour représenter une matrice, on utilise le plus souvent

une liste formée des listes de ses vecteurs ligne. Par exemple, pour représenter la matrice

$$M := \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix} \in \mathcal{M}_{2,3} \left(\mathbb{R} \right)$$

on utilise:

```
1 In [7]: m = [[0, 1, 2], [3, 4, 5]]
```

On accède à l'élément $m_{i,j}$ à l'aide de m[i][j]. Si m représente une matrice à q lignes et p colonnes alors $0 \le i < q$ et $0 \le j < p$, contrairement à l'usage mathématique où $1 \le i \le q$ et $1 \le j \le p$. Si l'on souhaite récupérer le nombre de lignes et de colonnes, il suffit d'écrire :

2.1.3 Ordre d'évaluation

Lors de l'évaluation d'une fonction comportant des expressions comme arguments, Python évalue ces expressions avant d'appeler la fonction. Par exemple, si l'on évalue l'expression f(2 + 3), Python va d'abord évaluer 2 + 3 en 5 puis appeler la fonction f avec l'argument 5. Presque tous les langages de programmation fonctionnent de cette manière et seuls certains langages fonctionnels de niche comme Haskell ont un comportement différent.

Les opérateurs and et or ont la particularité de fonctionner différemment. Étant donné que a and b est faux dès que a est faux, l'opérateur and évalue d'abord sa première opérande. Dans le cas où celle-ci s'évalue en False, la seconde opérande n'est pas évaluée et la valeur False est renvoyée. On dit que l'opérateur and est paresseux (lazy en anglais). Cette particularité est importante, notamment lorsque l'évaluation de la seconde opérande peut provoquer une erreur si la première est fausse. Par exemple, si x=0, l'expression x != 0 and 1 / x <= 1 ne lève pas d'exception et s'évalue en False. De même, l'opérateur or évalue d'abord sa première opérande. Si le résultat de cette évaluation est True, la seconde opérande n'est pas évaluée et le résultat est True. Si par contre, l'évaluation de la première opérande est False, la seconde opérande est évaluée.

Exercice 1

⇒ Quel est le résultat de l'expression k < len(t) and t[k] == 1 si les variables k et t contiennent respectivement les valeurs 3 et [1, 1, 0, 1]? Et si k contient la valeur 2? Si elle contient la valeur 4?

2.2 Programmation structurée

En programmation impérative, l'ordre dans lequel les différentes instructions sont exécutées est essentiel. Jusqu'à présent, nous avons écrit des programmes dans lesquels les instructions s'exécutaient les unes après les autres, toujours dans le même ordre. Afin de changer cet ordre, les programmes sont capables d'effectuer des sauts dans ce flot d'instructions. Les premiers langages de programmation utilisaient une instruction nommée goto qui leur permettait, sous condition, de sauter d'un endroit à l'autre du programme. Bien que totalement adaptée à la manière dont fonctionne un processeur, cette instruction est beaucoup trop permissive et a abouti à l'écriture de « code spaghetti », difficilement compréhensible par des humains, et donc source de nombreux bugs. Dans un célèbre article publié en 1968 sous le titre « Goto statement considered harmful », Edsger Dijkstra a plaidé pour l'utilisation essentielle d'instructions conditionnelles (if) et de boucles (for/while). Parallèlement, on a montré que ces structures de contrôle suffisent pour l'écriture des programmes les plus complexes. Les années 1970 donnent ainsi naissance à la programmation structurée.

2.2.1 Branchement

L'instruction if permet de soumettre l'exécution d'une instruction ou d'un bloc d'instructions à une condition.

```
1 def banquier(solde):
2    if solde < 0:
3        print("Vous êtes à découvert.")
4        print("Veuillez passer à la banque.")
5        print("Bonne journée.")</pre>
```

```
In [1]: banquier(100)

Bonne journée.

In [2]: banquier(-10)

Vous êtes à découvert.

Veuillez passer à la banque.

Bonne journée.
```

Le bloc d'instructions soumis à condition est délimité par l'indentation. Par rapport à l'instruction if, on décale d'un même nombre d'espaces chaque instruction faisant partie de ce bloc. Par convention, nous choisissons une indentation de 4 espaces. L'instruction suivant la fin du bloc doit avoir le même niveau d'indentation que l'instruction if. Le programme précédent vous souhaitera donc une bonne journée quel que soit l'état de votre compte.

Exercice 2

⇒ Expliquer ce que font les deux fonctions suivantes.

```
1 def foo(n):
2    if n % 2 == 1:
3         n = n - 1
4    print(n)
5    def bar(n):
7    if n % 2 == 1:
8         n = n - 1
9         print(n)
```

Il est possible d'exécuter un autre bloc d'instructions dans le cas où la condition n'est pas vérifiée.

```
1 def salutation(est_femme):
2    if est_femme:
3         genre = "Madame"
4    else:
5         genre = "Monsieur"
6         return "Bonjour " + genre + "."
```

```
1 In [3]: salutation(True)
2 Out[3]: 'Bonjour Madame.'
3
4 In [4]: salutation(False)
5 Out[4]: 'Bonjour Monsieur.'
```

Enfin, il est possible d'exécuter différents blocs si l'on a plusieurs conditions.

```
def bac(note):
      if note >= 16:
2
          print("Mention Tres Bien.")
3
      elif note >= 14:
4
          print("Mention Bien.")
5
      elif note >= 12:
6
          print("Mention Assez Bien.")
7
      elif note >= 10:
8
          print("Vous avez votre Bac.")
9
      else:
10
          print("Same player shoot again!")
11
```

```
1 In [5]: bac(13)
2 Mention Assez Bien.
```

Dans ce cas, seul le bloc correspondant à la première condition qui est vraie est exécuté.

Exercice 3

- ⇒ Une agence de voyages propose un voyage organisé où l'on peut s'inscrire en groupe. Le prix par personne est dégressif selon le nombre de personnes : 80 euros pour une ou deux personnes, 70 euros pour 3 à 5 personnes, 60 euros pour 6 à 9 personnes et 50 euros à partir de 10 personnes. On souhaite écrire une fonction ayant pour argument le nombre n de personnes et renvoyant le prix total pour l'ensemble du groupe.
 - 1. Écrire une fonction qui effectue au plus 3 comparaisons à chaque exécution.
 - 2. Écrire une nouvelle fonction qui effectue au plus 2 comparaisons.

2.2.2 Boucle for

Il est possible de répéter plusieurs fois la même séquence d'instructions en utilisant une boucle for. Comme pour l'instruction if, le bloc d'instructions à exécuter dans la boucle est indenté. La première instruction ne faisant pas partie de la boucle doit utiliser le même niveau d'indentation que la ligne du for.

```
1 def the_shining(n):
2    for _ in range(n):
3         print("All work and no play")
4         print("makes Jack a dull boy.")
5         print("Jack Torrance")
```

```
In [1]: the_shining(3)

All work and no play

makes Jack a dull boy.

All work and no play

makes Jack a dull boy.

All work and no play

makes Jack a dull boy.

Jack Torrance
```

Comme le nombre de fois où le corps de la boucle s'exécute est connu avant de rentrer dans la boucle, on parle de boucle *inconditionnelle*. En particulier, nous sommes certains d'en sortir avant même d'y rentrer; on dit qu'elles sont bornées.

Pour calculer le n-ième terme de la suite (u_n) définie par

```
u_0 \coloneqq \alpha et \forall n \in \mathbb{N}, \quad u_{n+1} \coloneqq \cos(u_n)
```

on peut utiliser le programme suivant :

```
import math
def suite(alpha, n):
    u = alpha
    for _ in range(n):
        u = math.cos(u)
    return u
```

```
1 In [1]: suite(1.0, 1)
2 Out[1]: 0.5403023058681398
3
4 In [2]: suite(1.0, 10)
5 Out[2]: 0.7442373549005569
6
7 In [3]: suite(1.0, 100)
8 Out[3]: 0.7390851332151608
```

Exercice 4

⇒ On définit la suite de Fibonacci par

$$F_0 := 0$$
, $F_1 := 1$, et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

Écrire une fonction fibo(n) renvoyant F_n . Notre fonction pourra utiliser deux variables a et b contenant respectivement les valeurs F_k et F_{k+1} .

Il est souvent utile d'avoir une variable prenant des valeurs entières successives lors d'une boucle. Ainsi, dans le programme suivant, la variable k va prendre successivement les 10 valeurs : $0, 1, 2, 3, \ldots, 9$.

```
1 def table(n):
2    for k in range(10):
3        print(k, "*", n, "=", k * n)
```

```
1 In [4]: table(8)
2 0 * 8 = 0
3 1 * 8 = 8
4 2 * 8 = 16
5 3 * 8 = 24
6 4 * 8 = 32
7 5 * 8 = 40
8 6 * 8 = 48
9 7 * 8 = 56
10 8 * 8 = 64
11 9 * 8 = 72
```

Remarquons que dans les exemples précédents, _ désigne un nom de variable qu'il est coutume d'utiliser en Python lorsque sa valeur ne nous est pas utile.

Les boucles for sont très utiles pour calculer des sommes. Par exemple, pour calculer les premiers termes de la suite (u_n) définie par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \sum_{k=1}^n \frac{1}{k^2},$$

on utilise la fonction suivante :

Dans cette fonction, on dit que s est un accumulateur.

```
1 In [1]: suite(1)
2 Out[1]: 1.0
3
4 In [2]: suite(10)
5 Out[2]: 1.5497677311665408
6
7 In [3]: suite(100)
8 Our[3]: 1.6349839001848923
```

De manière générale, la boucle for k in range(a, b) permet à la variable k de prendre successivement les valeurs $a, a+1, \ldots, b-1$. Dans notre cas, k va prendre les valeurs $1, 2, \ldots, n$ pour ajouter les valeurs $1, 1/2^2, \ldots, 1/n^2$ à s.

Plus généralement, si $\delta > 0$, range(a, b, delta) est utilisé pour boucler sur les entiers $a, a + \delta, a + 2\delta$ jusqu'au plus grand entier de la forme $a + k\delta$ strictement inférieur à b.

Exercices 5

- Donner dans chacun des cas suivants les valeurs générées par le range :
 - 1. range(7)
 - 2. range(2, 5)
 - 3. range(3, 7, 2)
- \Rightarrow Écrire une fonction permettant de calculer la somme de tous les nombres impairs entre 1 et n inclus.
- \Rightarrow Écrire une fonction permettant de calculer n!.

2.2.3 Réduction

Si l'on souhaite calculer la somme des éléments d'une liste d'entiers a, on peut initialiser une variable acc à 0 et lui ajouter successivement tous les éléments de a. On obtient alors la fonction :

```
1 def somme(a):
2    acc = 0
3    for i in range(len(a)):
4    acc = acc + a[i]
5    return acc
```

Pour prouver que cette fonction nous renvoie bien la somme des éléments de a, on définit, pour tout $i \in [0, n]$

$$\mathcal{H}_i \coloneqq$$
 « La variable acc contient la valeur $\sum_{k=0}^{i-1} a_k$. »

 \mathcal{H}_0 est vraie avant de rentrer dans la boucle, et si \mathcal{H}_i est vraie au début du corps de la boucle, alors \mathcal{H}_{i+1} est vraie à la fin du corps de la boucle. Cela prouve que \mathcal{H}_n est vraie en sortie de boucle et donc que la fonction renvoie bien la valeur souhaitée

$$\sum_{k=0}^{n-1} a_k.$$

On dit que \mathcal{H}_i est un invariant de boucle.

On peut de même écrire une fonction calculant le produit des éléments d'une liste. Cette fois, la variable prod est initialisée à 1. En effet, 0 était l'élément neutre pour l'addition, puisque pour tout $v \in \mathbb{N}$, 0 + v = v. Son équivalent pour la multiplication est 1, puisque pour tout $v \in \mathbb{N}$, $1 \times v = v$. On écrit donc :

```
1 def produit(a):
2    prod = 1
3    for i in range(len(a)):
4        prod = prod * a[i]
5    return prod
```

Dans ce cas, l'invariant de boucle est

$$\mathcal{H}_i :=$$
 « La variable prod contient la valeur $\prod_{k=0}^{i-1} a_k$. »

et prouve que la fonction renvoie bien le produit des éléments de a.

Exercice 6

⇒ Écrire une fonction prenant en entrée une liste de booléens et renvoyant True si tous ces booléens sont égaux à True, et False sinon.

De la même manière, on peut écrire une fonction calculant le plus grand élément d'une liste non vide d'entiers.

```
1 def maximum(a):
2    v_max = a[0]
3    for i in range(1, len(a)):
4         v_max = max(v_max, a[i])
5    return v_max
```

On peut aussi adapter le programme afin qu'il nous renvoie l'indice de ce maximum :

2.2.4 Boucle while

Les boucles for nous ont permis d'exécuter plusieurs fois un bloc d'instructions dans le cas où le nombre d'itérations est connu avant de rentrer dans la boucle. Lorsque ce nombre n'est pas connu à priori, typiquement lorsque l'on doit exécuter un bloc tant qu'une condition est vérifiée, on utilise l'instruction while.

Supposons que l'on souhaite calculer la racine carrée entière de $n \in \mathbb{N}$, c'est-à-dire le plus grand $a \in \mathbb{N}$ tel que $a^2 \le n < (a+1)^2$. Autrement dit, on souhaite calculer $\lfloor \sqrt{n} \rfloor$, mais sans utiliser de nombre flottant. Pour cela, on initialise a à 0 et on l'incrémente de 1 tant que $a^2 \le n$. Dès que ce n'est plus le cas, on renvoie a-1 qui est la valeur cherchée. On obtient ainsi le code :

```
1 def int_sqrt(n):
2     a = 0
3     while a * a <= n:
4      a = a + 1
5     return a - 1</pre>
```

```
1 In [1]: int_sqrt(15)
2 Out[1]: 3
```

Exercices 7

⇒ Après avoir remarqué que

$$ne^{-n} \xrightarrow[n \to +\infty]{} 0,$$

écrire un programme prenant en entrée $\varepsilon > 0$ et permettant de trouver le plus petit entier $n \in \mathbb{N}^*$ tel que $ne^{-n} \leqslant \varepsilon$.

⇒ Montrer comment une boucle for

```
1 for k in range(a, b):
2 bloc......
3 ......d instructions
```

peut s'écrire à l'aide d'une boucle while.

- ⇒ Le but de cet exercice est d'écrire une fonction prenant en entrée une liste de booléens et renvoyant True si un de ces booléens est True. Elle doit renvoyer False sinon.
 - 1. Écrire une première version de cette fonction en utilisant une boucle for.
 - 2. La version précédente a le défaut de parcourir toute la liste, même si elle trouve le booléen **True** dans les premiers éléments. On souhaite donc écrire une nouvelle version qui, dès qu'elle découvre un **True**, arrête le parcours. Pour cela, compléter la fonction suivante :

```
1 def possede_un_true(a):
2     n = len(a)
3     k = 0
4     while k < n and ...
5     k = k + 1
6     return ...
</pre>
```

Contrairement aux boucles inconditionnelles pour lesquelles on est assuré de sortir de la boucle, il est possible qu'une boucle conditionnelle ne termine jamais. On dit alors que le programme part en boucle infinie.

```
def un_jour_sans_fin():
    while True:
        print("This is Groundhog day!")
```

```
In [2]: un_jour_sans_fin()
This is Groundhog day!
This is Groundhog day!
This is Groundhog day!

This is Groundhog day!
```

Vous pouvez interrompre un tel programme en appuyant à la fois sur la touche « CTRL » et la touche « c ».

Une boucle while a donc le défaut de ne pas être assurée de terminer. Il est cependant essentiel de pouvoir prouver que dans les conditions normales d'exécution, votre boucle se termine bien. Pour cela, on cherche souvent une grandeur entière positive qui diminue strictement à chaque itération. Comme il n'existe pas de suite infinie strictement décroissante d'entiers positifs, on aura ainsi prouvé que la boucle termine. Une telle grandeur est appelé un variant.

Le calcul du pgcd par l'algorithme d'Euclide est basé sur le principe suivant : si $a, b \in \mathbb{N}$, le pgcd de a et b est a lorsque b = 0 et est égal au pgcd de b et du reste de la division euclidienne de a par b lorsque b > 0. Le programme suivant permet donc de calculer ce pgcd.

```
1 def pgcd(a, b):
2     while b > 0:
3         a, b = b, a % b
4     return a
```

```
1 In [3]: pgcd(15, 21)
2 Out[3]: 3
```

Exercice 8

⇒ Prouver que le programme précédent termine.

2.2.5 Boucles imbriquées

Il est possible d'imbriquer les boucles les unes dans les autres. Vous pouvez par exemple générer les tables de multiplication très facilement de la manière suivante :

```
1 def tables(n):
2    for a in range(2, n + 1):
3         for b in range(2, n + 1):
4         print(a, "*", b, "=", a * b)
```

```
In [1]: tables(4)
2 2 * 2 = 4
3 2 * 3 = 6
4 2 * 4 = 8
5 3 * 2 = 6
6 3 * 3 = 9
7 3 * 4 = 12
8 4 * 2 = 8
9 4 * 3 = 12
10 4 * 4 = 16
```

Comme les produits 2 * 3 et 3 * 2 sont égaux, on peut chercher à limiter ces produits aux cas où $a \leq b$. On écrit alors :

```
In [2]: tables_bis(4)
2 2 * 2 = 4
3 2 * 3 = 6
4 2 * 4 = 8
5 3 * 3 = 9
6 3 * 4 = 12
7 4 * 4 = 16
```

Les boucles imbriquées nous seront utiles pour parcourir les éléments d'une matrice. Notons au passage, qu'il est possible de mélanger les boucles for et while. Supposons par exemple qu'étant donnée une matrice de 0 et de 1, on souhaite calculer le nombre de lignes possédant au moins un 1.

Exercice 9

⇒ Écrire une fonction prenant en entrée une matrice de 0 et de 1 et renvoyant l'indice d'une des lignes possédant le plus de 1.

2.3. EXERCICES 33

2.3 Exercices

2.3.1 Programmation procédurale

Fonction

Exercice 1: Convertir l'heure

Écrivez une fonction conversion_heure(n) prenant en entrée un entier donnant le nombre de secondes qui se sont écoulées depuis minuit et renvoyant un tuple donnant l'heure au format heure, minute, seconde. Par exemple conversion_heure(4567) devra renvoyer le tuple (1, 16, 7).

Liste

Ordre d'évaluation

2.3.2 Programmation structurée

Branchement

Exercice 2: Trier 3 éléments

Écrire une fonction tri(a, b, c) qui prend en argument trois nombres réels a, b et c et qui renvoie le triplet formé de ces 3 éléments, triés par ordre croissant.

Exercice 3: Chevauchement

Écrire une fonction chevauche (a, b, c, d) prenant en entrée quatre entiers a, b, c et d et renvoyant True si les segments d'extremités a et b d'une part et c et d d'autre part ont une intersection non vide.

Boucle for

Exercice 4: Graphisme en console

1. Définir une fonction triangle1(n) qui prend en argument un entier n et qui dessine dans le shell un triangle sur n lignes

```
1 In [1]: triangle1(5)
2 *
3 **
4 ***
5 ****
6 *****
```

2. Définir une fonction triangle2(n) qui dessine ce même triangle mais dans l'autre sens.

```
In [2]: triangle2(5)
2 *****
3 ****
4 ***
5 **
6 *
```

3. Définir une fonction pyramide1(n) qui dessine une pyramide sur 2n-1 lignes.

```
1 In [3]: pyramide1(5)
2 *
3 **
4 ***
5 ****
6 *****
7 ***
8 ***
9 **
10 *
```

4. Définir une fonction pyramide2(n) qui dessine une pyramide de la manière suivante.

```
1 In [4]: pyramide2(5)
2      *
3      * *
4      * * *
5      * * * *
6      * * * * *
```

Exercice 5: Le Rot13

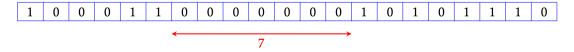
Le Rot13 (rotate by 13 places) est un cas particulier du chiffrage de CÉSAR. Comme son nom l'indique, il s'agit d'un décalage de 13 caractères de chaque lettre du texte à chiffrer : a devient n, b devient o, c devient p, etc. Son principal aspect pratique est que le codage et le décodage se réalisent exactement de la même manière puisque notre alphabet comporte 26 lettres. Rot13 est parfois utilisé dans les forums en ligne comme un moyen de masquer la réponse à une énigme, un spoiler, ou encore une expression grossière.

- 1. Écrire une fonction decale(c) prenant en entrée un caractère et renvoyant ce même caractère codé en RoT13 si c est un caractère entre a et z et qui renvoie c sinon. On pourra utiliser les fonctions ord et chr.
- 2. Définir une fonctin rot13(s) prenant en entrée une chaine de caractères et renvoyant cette même chaine de caractères codée en Rot13.
- 3. Utilisez cette fonction pour connaître la réponse à l'énigme suivante : Quelle est la différence entre un informaticien et une personne normale ?

har crefbaar abeznyr crafr dh'ha xvyb-bpgrg rfg étny à 1000 bpgrgf, ha vasbezngvpvra rfg pbainvaph dh'ha xvybzèger rfg étny à 1024 zègerf.

Exercice 6: Plus grand plateau

On considère une liste a dont les éléments sont égaux aux entiers 0 ou 1. Rédiger une fonction pg_plateau(a) calculant le nombre maximal de 0 consécutifs présents dans cette liste. Par exemple, pour la liste suivante, la fonction devra renvoyer la valeur 7.



R'eduction

Exercice 7: Somme

Écrire une fonction calculant la somme de tous les entiers inférieurs ou égaux à n inclus qui sont multiples de 3 ou de 5.

Exercice 8: Suite

Écrire une fonction permettant de calculer le n-ième terme de la suite définie par

$$\forall n \in \mathbb{N}, \quad u_n \coloneqq \sum_{k=0}^n \frac{1}{k!}.$$

2.3. EXERCICES 35

Exercice 9: Moyenne, variance

Dans cet exercice, on souhaite calculer la moyenne et la variance d'une liste de nombres flottants.

- 1. Écrire une fonction moyenne(t) qui renvoie la moyenne de la liste t.
- 2. La variance d'une famille finie $t := (t_0, \dots, t_{n-1})$ est donnée par

$$\mathbb{V}(t) \coloneqq \frac{1}{n} \sum_{k=0}^{n-1} \left(t_k - \overline{t} \right)^2$$

où \overline{t} est la moyenne de t.

(a) Écrire une fonction variance1(t) calculant la variance de la liste t.

Cette formule nécessite deux parcours de la liste : un pour calculer \bar{t} , et l'autre pour calculer $\mathbb{V}(t)$. Pour calculer $\mathbb{V}(t)$, on peut aussi utiliser la formule de Koenig-Huygens

$$\mathbb{V}(t) = \left[\frac{1}{n} \sum_{k=0}^{n-1} t_k^2 \right] - \bar{t}^2.$$

- (b) Prouver cette formule.
- (c) S'en servir pour écrire une fonction variance2(t) qui n'effectue qu'un seul parcours de la liste.

Exercice 10: Palindrome

Un palindrome est un mot pouvant se lire dans les deux sens comme : radar, rotor, kayak. Écrire une fonction palindrome(c) qui prend en entrée une chaine de caractères c et qui renvoie le booléen True si cette chaine est un palindrome et False sinon. On rappelle que si s est une chaine de caractères, on accède au caractère d'indice k grâce à s[k].

Exercice 11: Monotonie

- 1. Écrire une fonction est_croissante(a) prenant en entrée une liste d'entiers a et renvoyant True si cette liste est triée dans l'ordre croissant et False sinon.
- 2. Écrire une fonction est_monotone(a) prenant en entrée une liste d'entiers a et renvoyant True si cette liste est triée dans l'ordre croissant ou décroissant et False sinon.
- 3. Écrivez une fonction répondant à la question précédente mais ne parcourant qu'une seule fois la liste.

Boucle while

Exercice 12: Constante d'Euler

On note pour tout $n \in \mathbb{N}^*$

$$S_n := \sum_{k=1}^n \frac{1}{k}, \quad u_n := S_n - \ln(n) \text{ et } v_n := u_n - \frac{1}{n}.$$

On admet que (u_n) et (v_n) tendent vers la même limite γ appelée constante d'Euler et que l'on a

$$\forall n \in \mathbb{N}^*, \quad v_n \leqslant \gamma \leqslant u_n.$$

Écrire une fonction qui calcule un encadrement de γ de largeur inférieure à ε . Notre fonction renverra un tuple des deux réels encadrant γ .

Exercice 13: Nombre univers

On appelle nombre univers (en base 10) un nombre réel dont la partie décimale contient n'importe quelle succession de chiffres de longueur finie. Un exemple simple de nombre univers en base 10 est la constante de Champernowme 0.123456789101112131415161718192021... On pense que π est un nombre univers mais personne n'a pour le moment réussi à le démontrer. De même, on appelle suite univers (en base 10) une suite de nombres entiers elle que n'importe quelle succession de chiffres de longueur finie se trouve dans l'un des termes de cette suite. Il a été prouvé que la suite des puissances de 2 est une suite univers.

- 1. Écrire une fonction univers(s) prenant en entrée une chaine de caractères ne comportant que des chiffres et renvoyant la plus petite valeur de n pour laquelle s est présent dans l'écriture décimale de 2^n .
- 2. Déterminer la plus petite puissance de 2 contenant votre date de naissance au format JJMMAAAA.

Exercice 14: Nombres premiers

Le but de cet exercice est de déterminer les 1000 plus petits nombres premiers. Pour déterminer si un nombre est premier, on utilise le critère suivant : un entier p est premier si et seulement si $p \ge 2$ et lorsqu'il n'est divisible par aucun entier k tel que $2 \le k \le p$.

- 1. Écrire une fonction premier(p) prenant en paramètre un entier p et qui renvoie le booléen True lorsque p est premier et le booléen False dans le cas contraire.
- 2. En remarquant qu'il suffit de montrer que p n'admet aucun diviseur k tel que $2 \le k$ et $k^2 \le p$ pour montrer que p est premier, écrire une nouvelle fonction premier_bis(p) plus efficace.
- 3. Utiliser cette fonction pour afficher les mille plus petits nombres premiers.
- 4. La conjecture de Goldbach postule que tout entier pair supérieur à 3 peut s'écrire comme somme de deux nombres premiers (éventuellement égaux). Vérifier cette conjecture pour tout entier inférieur où égal à 1000.
- 5. À contrario, montrer que la conjecture suivante est fausse : tout nombre impair est la somme d'une puissance de 2 et d'un nombre premier.

Exercice 15: Suite de Conway

Les premiers termes de la suite de Conway sont $1, 11, 21, 1211, 111221, \ldots$ chaque terme étant obtenu en lisant à haute voix le terme précédent. C'est pourquoi Conway avait baptisé cette suite *look and say*. Par exemple, le terme 1211 se lit « un 1, un 2, deux 1 » donc le terme suivant est 111221.

- 1. Écrire une fonction lookandsay(s) prenant en paramètre une chaine de caractères représentant un entier et renvoyant la chaine de caractère représentant l'entier suivant dans la suite de Conway.
- 2. À l'aide de cette fonction, afficher les 20 premiers termes de la suite de Conway.
- 3. Il a été démontré que si on note u_n le nombre de chiffres du n-ième nombre de Conway, le rapport u_{n+1}/u_n admet une limite finie l. Donnez une valeur approchée de l.
- 4. Une autre propriété de cette limite est qu'elle ne dépend pas de la valeur initiale (excepté 22). Le vérifier expérimentalement.
- 5. Démontrer que dans a suite de Conway, ne peuvent apparaître que les chiffres 1, 2 et 3.

Boucles imbriquées

Exercice 16: Doublon

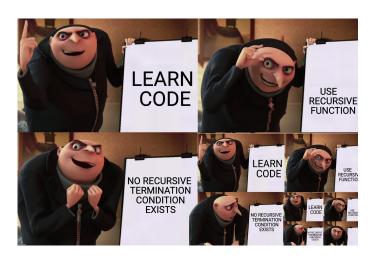
Écrire une fonction doublon(a) prenant en entrée une liste a et renvoyant True si a possède un doublon et False sinon. Par exemple, doublon([3, 4, 7, 3, 2]) devra renvoyer True car 3 est présent deux fois dans la liste.

Exercice 17: Somme

Écrire une fonction somme (a, s) prenant en valeur une liste d'entiers a et un entier s et qui renvoie True si s est la somme de deux entiers de la liste a et False sinon. Par exemple somme ([1, 7, 2, 4], 11) devra répondre True car 7 + 4 = 11 et somme ([1, 7, 2, 4], 14) devra répondre False.

Chapitre 3

Fonction



3.1	Fond	ction
	3.1.1	Fonction
	3.1.2	Les fonctions comme valeurs
	3.1.3	Assertion, test unitaire
	3.1.4	Sortie anticipée
3.2	\mathbf{V} ari	able locale et globale
	3.2.1	Variable locale
	3.2.2	Variable globale
	3.2.3	Composition de fonctions
3.3	Prog	grammation récursive
	3.3.1	Fonction récursive pure
	3.3.2	Fonction récursive impérative
	3.3.3	Fonctions mutuellement récursives
3.4	Exe	rcices
	3.4.1	Fonction
	3.4.2	Variable locale et globale
	3.4.3	Programmation récursive

3.1 Fonction

3.1.1 Fonction

La syntaxe générale d'une fonction en Python est

Le bloc d'instruction a pour vocation soit :

38 CHAPITRE 3. FONCTION

- de calculer une nouvelle valeur qui est renvoyée à l'aide de l'instruction return.
- d'avoir un effet de bord comme afficher du texte sur la sortie standard.

Les arguments arg1, ..., argn sont appelés arguments formels. On appelle une fonction à l'aide de la syntaxe nom_fonction(arg1, ..., argn); les valeurs des expressions arg1, ..., argn sont appelées arguments effectifs.

Une fonction renvoie toujours *une unique* valeur. On utilise pour cela l'instruction return. Lorsqu'on souhaite seulement effectuer un effet de bord, on renvoie None, ce que Python fait automatiquement s'il ne rencontre pas de return.

Python étant un langage de programmation à *typage dynamique*, nous n'avons pas besoin de préciser, ni les types des arguments, ni le type de la valeur de retour. Cette caractéristique du langage nous permet d'avoir des fonctions acceptant des arguments effectifs de types différents :

```
1 def f(x):
2 return x + 1
```

```
1 In [1]: f(2)
2 Out[1]: 3
3
4 In [2]: f(2.0)
5 Out[2]: 3.0
```

L'idée est que f peut accepter comme argument n'importe quel type que l'on peut ajouter à 1. En Python, les types int et float sont de bons candidats. On peut dire que la fonction f accepte un nombre et renvoie un nombre. On dit que Python fonctionne avec le principe du « duck typing » dont la devise est : « If it walks like a duck and it quacks like a duck, then it must be a duck ». Autrement dit, dans notre cas, si f(x) a un sens, c'est que x est un nombre.

Cependant, le plus souvent, nous définirons des fonctions qui ont vocation à être utilisées avec des paramètres d'un type donné. Dans ce cas, la valeur de retour est généralement aussi d'un type déterminé. Par exemple, la fonction

```
1 def est_pair(n):
2 return n % 2 == 0
```

est pensée pour prendre en entrée un entier; elle renvoie alors un booléen. On dit que la signature de cette fonction est est_pair(n: int) -> bool. En Python, si le bloc d'instructions commence par une chaine de caractères, elle est utilisée comme documentation. L'utilisation des triples " permet de rentrer des chaines de caractères qui s'étirent sur plusieurs lignes. Il est coutume d'utiliser de telles chaines pour la documentation; on les appelle docstrings.

```
1 def est_pair(n):
2    """est_pair(n: int) -> bool"""
3    ans = (n % 2 == 0)
4    return ans
```

Cette signature est présente uniquement à titre de documentation et n'est pas lue par Python. Par exemple, rien n'empêche la fonction

```
1 def suivant(n):
2    """suivant(n: int) -> int"""
3    return n + 1
```

d'être appelée avec un nombre flottant. Cependant, les fonctions que nous écrirons ne s'utiliseront qu'avec les types suggérés par la docstring.

Une fonction ne peut renvoyer qu'une seule valeur, ce qui est parfois problématique. Supposons par exemple que l'on souhaite écrire une fonction qui nous donne l'heure en fonction du nombre de secondes qui se sont écoulées depuis minuit. On doit pour cela renvoyer trois entiers : h, m et s. Pour cela, on choisit de renvoyer un tuple formé de 3 entiers. Une affectation simultanée permet de déconstruire le tuple lors de l'appel d'une telle fonction.

3.1. FONCTION 39

```
1 def heure(n):
2    """heure(n: int) -> tuple[int, int, int]"""
3    s = n % 60
4    n = n // 60
5    m = n % 60
6    h = n // 60
7    return h, m, s
```

```
1 In [3]: h, m, s = heure(42000)
```

3.1.2 Les fonctions comme valeurs

Les fonctions sont des valeurs comme les autres. Leur type est function.

```
1 def next(n):
2    """next(n: int) -> int"""
3    return n + 1
```

```
1 In [1]: type(next)
2 Out[1]: function
```

En particulier, il est possible de passer une fonction en argument d'une autre fonction. On peut par exemple définir la fonction suivante qui calcule une approximation de la dérivée d'une fonction.

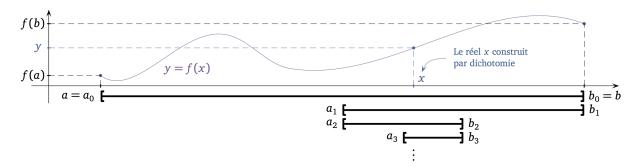
```
1 def f(x):
2    """f(x: float) -> float"""
3    return x**2 - 2
4
5 def derive(f, x, eps):
6    """derive(f: function, x: float, eps: float) -> float"""
7    return (f(x + eps) - f(x)) / eps
```

```
In [2]: derive(f, 1.0, 1.0e-6)
2 Out[2]: 2.0000009999243673
```

Exercice 1

⇒ Écrire une fonction

dichotomie(f: function, a: float, b: float, y: float, eps: float) -> tuple[float, float] qui prend en argument une fonction continue f telle que f(a) et f(b) sont de part et d'autre de g et renvoyant un couple (g, g) tel que $g \in g$ et tel qu'il existe $g \in g$ et le que $g \in g$ et le que $g \in g$ et le qu'il existe $g \in g$ et le que $g \in g$ et le que $g \in g$ et le qu'il existe $g \in g$ et le que $g \in g$ et le que



On utilisera pour cela l'algorithme de dichotomie qui consiste à définir deux suites (a_n) et (b_n) en commençant par poser $a_0 := a, b_0 := b$. Pour tout $n \in \mathbb{N}$, une fois a_n et b_n définis, on définit a_{n+1} et b_{n+1} de la manière suivante : on commence par calculer $f(c_n)$ où $c_n := (a_n + b_n)/2$ et

```
— si f(a_n) - y et f(c_n) - y sont de signes distincts, on pose a_{n+1} := a_n et b_{n+1} := c_n.
```

40 CHAPITRE 3. FONCTION

— sinon, on pose $a_{n+1} := c_n$ et $b_{n+1} := b_n$. Alors les suites (a_n) et (b_n) sont telles que pour tout $n \in \mathbb{N}$, il existe un $x \in [a_n, b_n]$ tel que f(x) = y. De plus $b_n - a_n$ tend vers 0 lorsque n tend vers $+\infty$.

3.1.3 Assertion, test unitaire

Afin de déceler au plus tôt la présence de bugs dans nos programmes, il est important d'écrire des jeux de tests unitaires. Ces tests exécutent une fonction pure avec des arguments dont la valeur de retour est connue; ils vérifient ainsi leur conformité. Par exemple, pour vérifier que la fonction

```
1 def factorielle(n):
2    """factorielle(n: int) -> int"""
3    fac = 1
4    for k in range(1, n + 1):
5        fac = fac * k
6    return fac
```

nous renvoie bien la factorielle de n pour tout $n \ge 0$, on pourra vérifier que factorielle(0) renvoie bien 1, factorielle(2) renvoie bien 2 et factorielle(5) renvoie bien 120. Pour cela, on écrira

```
1 assert factorielle(0) == 1
2 assert factorielle(2) == 2
3 assert factorielle(5) == 120
```

en dessous de la définition de notre fonction. De manière générale, le mot clé assert est suivi d'une expression qui doit s'évaluer en un booléen : si ce booléen s'évalue en True, l'instruction assert ne fait rien; sinon, elle lève une exception, ce qui se traduit par une erreur.

3.1.4 Sortie anticipée

Une fonction peut posséder plusieurs return dans son corps. Dans ce cas, le premier return rencontré fait sortir de la fonction. Il est courant d'utiliser cette propriété afin d'exprimer simplement certaines boucles. Par exemple, la fonction suivante teste si une chaine de caractères possède un e.

```
1 def possede_un_e(s):
2     """possede_un_e(s: str) -> bool"""
3     for k in range(len(s)):
4         if s[k] == 'e':
5             return True
6     return False
```

Dans cette fonction, la boucle a pour tâche de vérifier les caractères un à un. Si la chaines de caractères s possède un « e », il existe un indice $k \in [\![0,n-1]\!]$ pour lequel $s[k]\!]$ est égal à 'e'; la fonction va exécuter la ligne 5, renvoyer True et sortir immédiatement. Si la chaine de caractères ne contient pas la lettre « e », la condition ligne 4 n'est jamais satisfaite; on sort alors de la boucle et la dernière instruction renvoie False.

```
In [1]: s = "Puis, à la fin, nous saisirons pourquoi tout fut bati à partir d un carcan si
dur, d un canon si tyrannisant. Tout naquit d un souhait fou, d un souhait nul : assouvir
jusqu au bout la fascination du cri vain, sortir du parcours rassurant du mot trop
subit, trop confiant, trop commun, n offrir au signifiant qu un goulot, qu un boyau,
qu un chas, si aminci, si fin, si aigu qu on y voit aussitot sa justification."

In [2]: possede_un_e(s)
Uut[2]: False
```

Ce style de progammation, dans lequel il existe plusieurs points de sortie d'une fonction, peut devenir plus difficile à comprendre. Il est donc découragé d'en abuser, car c'est une source de bugs. Cependant, dans un exemple comme celui-ci, son usage est pleinement justifié.

Remarquons qu'une sortie anticipée casse le caractère inconditionnel d'une boucle for, puisqu'on ne sait plus avant de rentrer dans la boucle quel va être le nombre d'itérations. Cependant, elle garde son caractère borné et est toujours assurée, soit de terminer totalement, soit d'être interrompue par un return.

Exercice 2

- □ 1. Écrire une fonction est_sous_mot_position(sm: str, s: str, k: int) -> bool prenant deux chaines de caractères sm et m et renvoyant True si sm est un sous-mot de s commençant à la position k, et False sinon. Par exemple est_sous_mot_position("th", "python", 2) doit renvoyer True. On supposera que le mot m est assez grand pour contenir le sous-mot sm à partir de la position k.
 - 2. En déduire une fonction est_sous_mot(sm: str, s: str) -> bool renvoyant True si sm est un sous-mot de m et False sinon.

Notons que l'instruction break permet de sortir d'une boucle for/while (la plus intérieure s'il y en a plusieurs imbriquées), sans sortir de la fonction. Son utilisation peut se justifier dans quelques rares cas, par exemple si l'on souhaite écrire la fonction est_sous_mot(sm: str, s: str) -> bool de l'exercice précédent sans utiliser une fonction auxiliaire :

```
def est_sous_mot(sm, s):
      """est_sous_mot(sm: str, s: str) -> bool"""
      m = len(sm)
3
      n = len(s)
      for k in range(n - m + 1):
          found = True
          for i in range(m):
               if sm[i] != s[k + i]:
                   found = False
                   break
10
          if found:
11
               return True
12
13
      return False
```

```
1 In [3]: est_sous_mot("thon", "python")
2 Out[3]: True
```

On l'utilisera cependant avec parcimonie, car il rend la compréhension d'un algorithme plus délicate. Il sera en général beaucoup plus simple d'utiliser une fonction auxiliaire utilisant une sortie anticipée.

3.2 Variable locale et globale

3.2.1 Variable locale

Il est possible de créer des variables à l'intérieur d'une fonction. Ces variables sont *locales* à la fonction et sont détruites une fois sorti de cette dernière.

```
1 In [1]: puissance_quatre(2)
2 Out[1]: 16
3
4 In [2]: c
5 (*@\textcolor{violet}{NameError: name 'c' is not defined}@*)
```

Si la variable c est définie avant l'appel de la fonction, sa valeur est masquée lors de l'appel et on la retrouve une fois sorti de la fonction :

```
1 In [3]: c = 5
2
3 In [4]: puissance_quatre(2)
4 Out[4]: 16
5
6 In [5]: c
7 Out[5]: 5
```

Pour comprendre ce phénomène, il est important de comprendre la notion de masquage des variables : une fois dans la fonction, ligne 4, juste avant d'exécuter l'instruction return, l'état du système est le suivant :

```
1 # sous-état local fonction {c: 4, n: 2}
2 # sous-état global {c: 5}
```

À ce moment précis, l'état du système est la superposition de deux sous-états : le sous-état du dessus a été créé lors de l'appel de notre fonction et celui du dessous correspond au sous-état au moment de l'appel. Cette superposition de sous-états est rendue possible par la pile d'appels. La variable à laquelle on accède est par défaut celle qui se situe dans le sous-état actif, celui qui est le plus haut sur la pile. Par exemple, une fois à l'intérieur de notre fonction, la variable globale c contenant 5 est masquée par la variable locale de même nom, contenant 4 : c'est cette dernière à laquelle on accède. Une fois l'appel terminé, le sous-état local à l'appel est supprimé et on retrouve notre état initial.

```
ı # sous-état global {c: 5}
```

Ces sous-états sont agencés comme une pile d'assiettes : lorsqu'on appelle une fonction, une nouvelle « assiette » est empilée au sommet de la pile ; lorsque cet appel se termine, cette assiette est supprimée.

Ce mécanisme permet à la fonction $puissance_quatre$ de n'avoir aucun effet sur l'état au niveau de l'appel. Notons d'ailleurs que la variable n est locale à la fonction : elle est initialisée avec l'argument effectif passé lors de son appel. Comme cette variable est locale, on peut la modifier sans craindre d'effet de bord.

```
def puissance_quatre(n):
    """puissance_quatre(n: int) -> int"""
    n = n * n
    return n * n
```

```
In [6]: n = 2
In [7]: puissance_quatre(n)
In [8]: n
In [8]: n
In [8]: 2
```

3.2.2 Variable globale

On appelle variable globale toute variable définie dans le niveau le plus bas de la pile. Les variables locales sont celles définies dans les niveaux supérieurs. Si elles ne sont pas masquées, il est toujours possible d'accéder en lecture aux variables globales.

```
1 b = 1
2
3 def f(a):
4  """f(a: int) -> int"""
5  return a + b
```

```
1 In [1]: f(2)
2 Out[1]: 3
```

Lorsque l'on est dans la fonction f pour calculer f(2), ligne 5, juste avant le return, l'état du système est donné par

```
1 # sous-état local fonction {a: 2}
2 # sous-état global {b: 1}
```

et l'accès à la variable globale b est possible.

Cependant, par défaut, il n'est pas possible de changer la valeur d'une variable qui n'est pas locale. Afin de pouvoir modifier une telle variable, il convient de la déclarer à l'intérieur de la fonction comme *globale* à l'aide du mot clé global.

```
1 In [2]: carre_mission_impossible(2)
2 Out[2]: 4
3
4 In [3]: carre_mission_impossible(2)
5 Out[3]: 4
6
7 In [4]: carre_mission_impossible(2)
8 Out[4]: 0
```

Cette fonction, si vous l'utilisez, s'autodétruira après 2 appels. Ce genre d'effet est très difficilement compréhensible pour son utilisateur. On dit qu'elle est *impure* car elle a un effet de bord. Comme elle ne renvoie pas None, ce comportement est surprenant. C'est pourquoi, la modification de variables globales est un style de programmation à proscrire.

3.2.3 Composition de fonctions

Une fonction peut elle-même appeler une autre fonction. On peut ainsi définir une fonction calculant les coefficients binomiaux à l'aide d'une fonction calculant la factorielle d'un entier.

```
1 def factorielle(n):
2    """factorielle(n: int) -> int"""
3    fac = 1
4    for k in range(1, n + 1):
5         fac = fac * k
6    return fac
7
8 def binome(k, n):
9    """binome(k: int, n: int) -> int"""
10    return factorielle(n) // (factorielle(k) * factorielle(n - k))
```

Lors de l'exécution, la composition de fonctions fait apparaître une succession de sous-états sur plusieurs niveaux. Voyons cela sur un exemple simple :

```
1 def puissance_deux(n):
2    """puissance_deux(n: int) -> int"""
3    u = n * n
4    return u
5
6 def puissance_quatre(n):
7    """puissance_quatre(n: int) -> int"""
8    u = puissance_deux(n)
9    v = puissance_deux(u)
10    return v
```

```
In [1]: n = 2

In [2]: puissance_quatre(n)

Uut[2]: 16
```

Lors du calcul de puissance_quatre(n), ligne 9, on appelle puissance_deux(u) et à l'intérieur de cette fonction, ligne 4, juste avant le return u, le système est dans l'état suivant :

```
      1 # sous-état local puissance_deux
      {n: 4, u: 16}

      2 # sous-état local puissance_quatre
      {n: 2, u: 4}

      3 # sous-état global
      {n: 2}
```

La superposition de ces sous-états forme la pile d'appels.

3.3 Programmation récursive

Une fonction récursive est une fonction qui s'appelle elle-même. Cette possibilité donne naissance à un style d'algorithmes qu'on appelle programmation récursive. L'idée essentielle derrière ce style est de réduire la résolution d'un problème à la résolution de problèmes similaires de tailles strictement inférieures. Pour que ce principe fonctionne, il faut d'une part spécifier des problèmes de tailles élémentaires, qu'on appelle cas de base, et donner leurs solutions ; il faut s'assurer d'autre part que les réductions précédentes finissent toujours par rencontrer de tels cas.

3.3.1 Fonction récursive pure

Commençons par un classique de la programmation récursive : le calcul de n!.

```
— réduction : Si n \ge 1, alors n! = n \times (n-1)!.
```

```
— cas\ de\ base: Sinon n = 0 et 0! = 1.
```

La traduction en Python est immédiate.

```
1 def factorielle(n):
2     """factorielle(n: int) -> int"""
3     if n >= 1:
4         return n * factorielle(n - 1)
5     else:
6         return 1
```

```
1 In [1]: factorielle(5)
2 Out[1]: 120
```

Sur le même principe, nous allons programmer la division euclidienne d'un entier $a \in \mathbb{N}$ par $b \in \mathbb{N}^*$ en n'utilisant que des comparaisons, des additions et des soustractions.

— réduction : Si $a \ge b$, on note q et r le quotient et le reste de la division euclidienne de a-b par b. Alors

```
a-b=qb+r, donc a=(q+1)b+r.
```

On en déduit que q+1 et r sont le quotient et le reste de la division euclidienne de a par b.

— cas de base : Sinon $0 \le a < b$ et le quotient de la division euclidienne de a par b est 0 et son reste est a.

On obtient ainsi la fonction:

```
1 def division(a, b):
2    """division(a: int, b:int) -> tuple[int, int]"""
3    if a >= b:
4         q, r = division(a - b, b)
5         return (q + 1, r)
6    else:
7    return (0, a)
```

```
1 In [2]: division(23, 7)
2 Out[2]: (3, 2)
```

Exercice 3

 \Rightarrow Définir de manière récursive la fonction puissance(x: int, n: int) -> int calculant x^n pour $n \in \mathbb{N}$. On utilisera le fait que $x^0 = 1$ et que si $n \ge 1$, alors $x^n = x^{n-1}x$.

Tout comme une boucle while peut être infinie, une fonction récursive peut ne jamais terminer. Prenons l'exemple de la fonction

```
1 def est_pair(n):
2    """est_pair(n: int) -> bool"""
3    if n == 0:
4         return True
5         elif n == 1:
6            return False
7         else:
8         return est_pair(n - 2)
```

qui détermine si un entier n est pair ou non. Elle fonctionne parfaitement pour un entier $n \ge 0$, mais si on appelle $\mathtt{est_pair}(-1)$, la fonction va appelle $\mathtt{successivement}$ est_pair avec les valeurs -3, -5, -7, etc. Elle ne terminera jamais et on obtiendra l'erreur

```
1 In [3]: est_pair(-1)
2 RecursionError: maximum recursion depth exceeded in comparison
```

Il faudra donc être attentif, lorsqu'on définit une fonction récursive, à ce que tous les cas se réduisent à un cas de base en un nombre fini d'appels.

L'algorithme d'exponentiation rapide permet de calculer efficacement x^n pour $n \in \mathbb{N}$. Cet algorithme se base sur les deux remarques suivantes :

```
 - r\'eduction : Si n > 0, pour calculer x^n, on effectue la division euclidienne de n par 2. Il existe donc p ∈ N et r ∈ {0,1} tel que n = 2p + r. On remarque ensuite que <math display="block"> - si r = 0, c'est-à-dire si n est pair, on a x^n = (x^p)^2. \\  - si r = 1, c'est-à-dire si n est impair, on a x^n = x(x^p)^2. \\  - cas de base : On a x^0 = 1.
```

Ces deux remarques conduisent à l'algorithme suivant :

L'algorithme d'exponentiation rapide permet de calculer x^n de manière plus efficace que l'algorithme naïf. Le calcul de x^n se fait de manière naïve en n-1 multiplications. Cependant, une récurrence immédiate montre qu'avec l'algorithme d'exponentiation rapide, le calcul de x^n pour $n \coloneqq 2^p$ nécessite seulement 2+p multiplications. Ainsi, l'algorithme naïf a besoin de 1023 multiplications pour calculer x^{1024} alors que l'algorithme d'exponentiation rapide en a besoin seulement de 12, car $1024=2^{10}$.

Cet exemple nous permet de réaliser qu'une fonction récursive va le plus souvent créer une pile d'appels conséquente. Par exemple, lors de l'appel de expo_rapide(3, 4), on va finir par appeler récursivement expo_rapide(3, 0). Lors de cet appel, une fois à la ligne 4, juste avant le return 1, la pile d'appels est dans l'état suivant :

```
1 # sous-état local expo_rapide(3, 0) {x: 3, n: 0}
2 # sous-état local expo_rapide(3, 1) {x: 3, n: 1, p: 0}
3 # sous-état local expo_rapide(3, 2) {x: 3, n: 2, p: 1}
4 # sous-état local expo_rapide(3, 4) {x: 3, n: 4, p: 2}
5 # sous-état global
{}
```

Lors de l'appel précédent est_pair(-1) qui ne terminait pas, l'erreur renvoyée était d'ailleurs liée à cette pile d'appels qui était devenue trop grande. On parle de débordement de la pile d'appels, ou de stackoverflow en anglais.

3.3.2 Fonction récursive impérative

return x * y * y

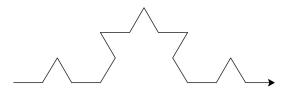
Nous allons continuer en programmant le flocon de Von Koch. La génération 0 de ce flocon est un segment de longueur a,

la première génération est la figure suivante, le « triangle » central étant équilatéral,

puis la seconde génération est :

46

11



Le but est d'écrire un programme dessinant la n-ième génération du flocon de Von Koch de longueur a. On remarque évidemment le caractère récursif de sa définition.

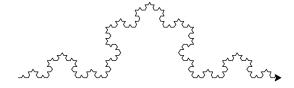
- réduction : Si $n \ge 1$, on dessine un flocon de Von Koch de longueur a/3 et de génération n-1, puis on tourne à gauche de 60 degrés, on dessine de nouveau le même flocon de Von Koch, on tourne à droite de 120 degrés, on dessine à nouveau un flocon de Von Koch, on tourne à gauche de 60 degrés et on dessine un dernier flocon.
- cas de base : Si n = 0, on trace un segment de longueur a.

On obtient ainsi le programme suivant :

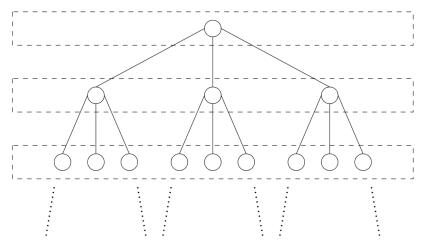
```
import turtle as lg

def koch(a, n):
    if n == 0:
        lg.forward(a)
    else:
        koch(a / 3, n - 1)
        lg.left(60)
        koch(a / 3, n - 1)
        lg.right(120)
        koch(a / 3, n - 1)
        lg.left(60)
        koch(a / 3, n - 1)
        koch(a / 3, n - 1)
        koch(a / 3, n - 1)
```

Le tracé de la 4^e génération nous donne



Ce programme récursif est l'occasion de présenter l'arbre d'appels d'une fonction récursive. Au sommet, nous avons la racine qui représente l'appel initial à notre fonction. Cette fonction va elle-même s'appeler plusieurs fois et donc générer des appels représentés dans l'arbre avec une profondeur de 1.



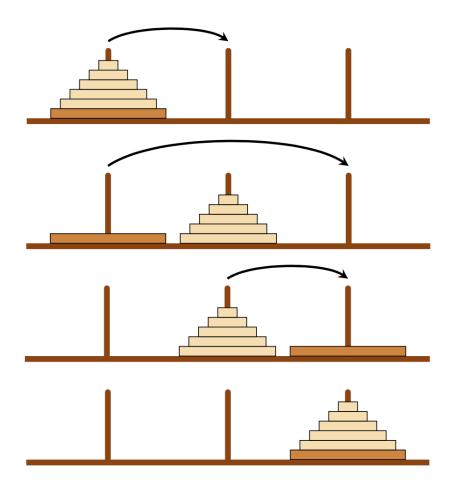
Ces fonctions s'appellent elles-mêmes plusieurs fois, et ainsi de suite.

Nous allons maintenant nous atteler à la résolution d'un grand classique des jeux mathématiques : le jeu des tours de Hanoï, inventé par le mathématicien Edouard Lucas. Ce jeu est constitué de trois tiges sur lesquelles sont enfilés n disques de diamètres différents. Au début du jeu, ces disques sont tous positionnés sur la première tige, du plus grand qui est en dessous, au plus petit. L'objectif est de déplacer tous ces disques sur la troisième tige en respectant les règles suivantes :

- On ne peut déplacer qu'un disque à la fois.
- On ne peut pas poser un disque sur un disque de diamètre inférieur.

Raisonnons par récurrence : pour pouvoir déplacer le dernier disque, on déplace les n-1 disques qui le couvrent sur la tige centrale. Une fois ces déplacements effectués, nous pouvons déplacer le dernier disque sur la troisième tige. Il reste alors à déplacer les n-1 autres disques vers la troisième tige.

48 CHAPITRE 3. FONCTION



Tout est dit : pour pouvoir déplacer n disques de la tige 1 vers la tige 3, il suffit de savoir déplacer n-1 disques de la tige 1 vers la tige 2 puis de la tige 2 vers la tige 3. Autrement dit, il suffit de généraliser le problème de manière à décrire le déplacement de n disques de la tige i à la tige k en utilisant la tige j comme pivot. Ceci conduit à la fonction suivante :

```
1 def hanoi(n, i, j, k):
2    """hanoi(n: int, i: int, j: int, k: int) -> NoneType"""
3    if n == 0:
4        return None
5    else:
6        hanoi(n - 1, i, k, j)
7        print("Déplacer le disque au sommet de la tige", i, "vers la tige", k)
8        hanoi(n - 1, j, i, k)
```

```
In [1]: hanoi(3, 1, 2, 3)

2 Déplacer le disque au sommet de la tige 1 vers la tige 3

3 Déplacer le disque au sommet de la tige 1 vers la tige 2

4 Déplacer le disque au sommet de la tige 3 vers la tige 2

5 Déplacer le disque au sommet de la tige 1 vers la tige 3

6 Déplacer le disque au sommet de la tige 2 vers la tige 1

7 Déplacer le disque au sommet de la tige 2 vers la tige 3

8 Déplacer le disque au sommet de la tige 1 vers la tige 3
```

Exercice 4

 \Rightarrow Déterminer le nombre de mouvements utilisés par l'algorithme précédent pour résoudre le problème des tours de Hanoï à n disques.

3.4. EXERCICES 49

3.3.3 Fonctions mutuellement récursives

Il est possible de définir des fonctions mutuellement récursives : l'exemple le plus simple serait

$$\begin{cases} f(0) \coloneqq 1 \\ g(0) \coloneqq 0 \\ \forall n \in \mathbb{N}, \quad f(n+1) \coloneqq g(n) \\ \forall n \in \mathbb{N}, \quad g(n+1) \coloneqq f(n) \end{cases}$$

Voici le code Python mettant en oeuvre ces fonctions :

```
def f(n):
      """f(n: int) -> int"""
      if n == 0:
3
          return 1
      else:
          return g(n - 1)
  def g(n):
      """g(n: int) -> int"""
      if n == 0:
10
          return 0
11
      else:
12
          return f(n - 1)
```

Exercice 5

 \Rightarrow De quelles fonctions élémentaires f et g sont-elles des implémentations tordues et inefficaces?

Nous n'aurons pas très souvent besoin de définir des fonctions mutuellement récursives, mais c'est quand même nécessaire de temps en temps.

3.4 Exercices

3.4.1 Fonction

Fonction

Les fonctions comme valeurs

Exercice 1 : Dérivée numérique

On se donne une fonction numérique f dont on souhaite obtenir une approximation de la dérivée f'(x). Pour cela, on utilise les deux approximations suivantes

$$f'(x) \approx \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$
 et $f'(x) \approx \frac{f(x+\varepsilon) - f(x-\varepsilon)}{2\varepsilon}$.

- 1. Écrire les fonctions derive_1(f: function, x: float, eps: float) -> float et derive_2, de même signature, qui prennent en entrée f, x et ε et qui renvoient respectivement l'approximation de f'(x) donnée par la première et la seconde formule.
- 2. Testez la fonction deriv_1 avec $f(x) := x^2$ puis $f(x) := \ln x$ pour x = 1 et différentes valeurs de ε de la forme 10^{-n} . Pour quelle valeur de n l'approximation est-elle la meilleure?
- 3. Répétez l'expérience avec la fonction derive_2. Quelle conclusion pouvez-vous en tirer?

Sortie anticipée

Exercice 2: Doublon

Écrire une fonction doublon(a) prenant en entrée une liste a et renvoyant True si a possède un doublon et False sinon. Par exemple, doublon([3, 4, 7, 3, 2]) devra renvoyer True car 3 est présent deux fois dans la liste. Notre fonction devra sortir dès qu'un doublon est trouvé.

Exercice 3: Mêmes éléments

Écrire une fonction memes_elements(u: list[int], v: list[int]) \rightarrow bool déterminant si les listes u et v possèdent les mêmes éléments, peu importe l'ordre et leur nombre d'occurences. Par exemple

devra répondre True et memes_elements([1, 7, 2], [2, 1]) devra répondre False car 7 est présent dans la première liste mais pas dans la seconde.

Exercice 4 : Chaine bien parenthésée

On dit qu'une chaine de caractères s constituée de '(' et de ')' est bien parenthésée lorsque chaque parenthèse ouvrante est correctement fermée. Par exemple "(()())" est bien parenthésée alors que "()) (" et "(()" ne le sont pas.

En utilisant un compteur qui compte le nombre de parenthèses ouvrantes que l'on a vu jusqu'à présent et qui ne sont pas fermées, écrire une fonction bien_parenthesee(s: str) -> bool nous indiquant si la chaine caractère s, que l'on supposera constituée uniquement de '(' et de ')', est bien parenthésée.

Assertion, test unitaire

Exercice 5: Chasse aux bugs

Les fonctions des questions suivantes sont buguées. Pour chaque fonction, le but est de proposer un test unitaire qui n'est pas passé par la fonction puis de corriger le bug.

1. On définit la suite de Fibonacci par

$$F_0 := 0$$
, $F_1 := 1$, et $\forall n \in \mathbb{N}$, $F_{n+2} := F_{n+1} + F_n$.

Donner un test unitaire qui n'est pas passé par la fonction suivante devant calculer le n-ième terme de la suite de Fibonacci

```
1 def fibo(n):
2    """fibo(n: int) -> int"""
3     a = 0
4     b = 1
5     for _ in range(n - 1):
6         a, b = b, a + b
7    return b
```

puis corriger la fonction pour qu'elle devienne valide.

Sortie anticipée

3.4.2 Variable locale et globale

Variable locale

Variable globale

Composition de fonctions

3.4.3 Programmation récursive

Fonction récursive pure

Exercice 6 : Ensemble des parties

On suppose les ensembles représentés par des listes non triées d'éléments deux-à-deux distincts. Rédiger une fonction subset qui prend en argument un ensemble et qui renvoie l'ensemble de ses parties. Par exemple subset([1,2,3]) doit renvoyer [[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

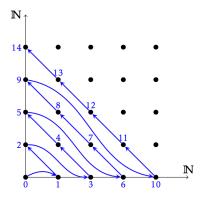
Exercice 7: Somme dans un arbre

Écrire une fonction somme(t) qui prend en paramètre une séquence imbriquée, de profondeur et de structure quelconque, dont tous les composants élémentaires sont des nombres, et qui calcule la somme de tous ces éléments. Par exemple somme([[[1, 2], [3, 4, 5]], 6, [7, 8], 9]) devra renvoyer 45. Pour écrire cette fonction on pourra utiliser la fonction isinstance(t, list) qui permet de savoir si t est une liste.

3.4. EXERCICES 51

Exercice 8 : Dénombrabilité de \mathbb{N}^2

On démontre que l'ensemble $\mathbb{N} \times \mathbb{N}$ est dénombrable en numérotant chaque couple $(x,y) \in \mathbb{N}^2$ suivant le procédé suggéré par la figure ci-dessous.



- 1. Rédiger une fonction récursive qui renvoie le numéro du point de coordonnées $(x,y) \in \mathbb{N}^2$.
- 2. Rédiger la fonction réciproque, là encore, de façon récursive.

Fonction récursive impérative

Exercice 9: Triangles

1. Écrire une fonction récursive triangle(n) affichant un triangle de la manière suivante.

```
1 In [1]: triangle(5)
2 *
3 **
4 ***
5 ****
6 *****
```

2. Écrire une fonction récursive triangle_inverse(n) affichant un triangle de la manière suivante.

```
1 In [2]: triangle_inverse(5)
2 *****
3 ****
4 ***
5 **
6 *
```

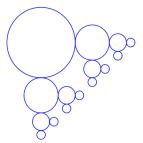
3. Écrire une fonction récursive sablier (n) affichant un demi-sablier de la manière suivante.

```
1 In [3]: sablier(4)
2 ****
3 ***
4 **
5 *
6 **
7 ***
8 ****
```

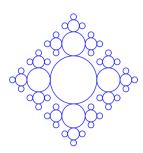
Exercice 10: Cercles

On suppose disposer d'une fonction $\operatorname{circle}([\mathtt{x},\ \mathtt{y}],\ \mathtt{r})$ qui trace à l'écran un cercle de centre (x,y) et de rayon r.

1. Définir une fonction récursive permettant de tracer le dessin ci-dessous où le cercle le plus gros est de rayon 1 de centre de coordonnées (0,0) et chaque cercle est de rayon deux fois plus petit que celui de la génération précédente.



2. Même question avec ce dessin.

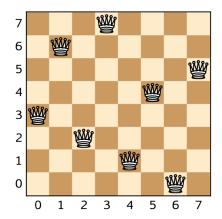


Exercice 11: Variante sur les tours de Hanoï

Résoudre le problème des tours de Hanoï en s'imposant une contrainte supplémentaire : tout mouvement entre les tiges 1 et 3 est interdit

Exercice 12: Problème des n reines

Le problème des n reines consiste à placer n reines sur un échiquier de sorte que deux reines quelconques ne puissent pas s'attaquer, c'est-à-dire qu'il ne faut pas que deux reines partagent une même ligne, une même colonne ou une même diagonale. De telles positions seront qualifiées dans cet exercice de *valides*. Il est évident que dans chaque colonne doit se trouver une et une seule reine. Ainsi, il est possible de représenter ce problème par un tableau de n cases $q = [q_0, \ldots, q_{n-1}]$ dans lequel q_j désigne la ligne dans laquelle est placée la reine de la colonne j. Par exemple, le dessin ci-dessous représente la solution [3, 6, 2, 7, 1, 4, 0, 5].



On appellera solution partielle de rang j un tableau q de longueur n dont les j premières cases sont remplies avec des positions valides pour les reines, les n-j autres cases restant à remplir.

Écrire une fonction reine(q, j) qui prend pour arguments un entier j et une solution partielle q et qui réalise les opérations suivantes.

- Si j=n, cette fonction se contente d'afficher le tableau q. Dans ce cas, le problème est résolu.
- Si j < n, cette fonction recherche parmi les n valeurs possibles pour q_j celles qui correspondent à des positions valides et pour chacune d'elles poursuit la recherche au rang j + 1.

Fonctions mutuellement récursives

Chapitre 4

Liste

4.1 L	ste
4.1	1 Liste
4.1	2 Parcours de liste
4.1	3 Création de liste
4.1	4 Modification des éléments
4.1	5 Ajout et suppression d'éléments
4.1	6 Les objets Python
4.2 S	ructures séquentielles
4.2	1 Pile
4.2	2 File
4.2	3 File de priorité
4.2	4 Dictionnaire
4.3 E	xercices
4.3	1 Liste

Si l'on dispose d'une collection ordonnée d'objets comme des relevés de température effectués chaque jour d'un mois ou une liste de vêtements, il est naturel de les regrouper à l'aide d'un objet informatique que l'on appelle collection. Un peu comme il existe différentes manières de ranger ses pantalons, il existe différentes façons d'organiser une collection dans la mémoire de l'ordinateur. En informatique, une telle organisation est appelée une structure de données.

Prenons l'exemple d'une collection de pantalons que l'on souhaite ranger dans notre placard. La manière la plus courante de les organiser est de les placer en pile comme ci-dessous :

Une autre manière de les ranger est d'avoir une succession de compartiments dans lesquels on peut ranger chaque pantalon. En informatique, une telle organisation est appelée un tableau.

Chaque organisation a ses avantages et ses inconvénients :

- Le tableau a l'avantage de donner un accès direct à tous les pantalons. Cependant, il ne permet pas d'en rajouter de nouveau.
- La pile permet facilement d'ajouter un nouveau pantalon dans notre collection, en le plaçant au sommet, mais elle ne permet l'accès direct qu'au pantalon placé sur le dessus. Si vous souhaitez accéder soigneusement à un pantalon qui se trouve en dessous, il est nécessaire de dépiler un à un chaque pantalon.

Python propose une structure de données qu'il appelle *liste* et qui essaie de faire la synthèse des deux qualités essentielles des structures de données précédentes : la possibilité d'avoir un accès direct à chaque objet et celle d'ajouter facilement un objet en fin de collection. L'analogie la plus proche en terme de rangement est la suivante

où l'on imagine que les pantalons doivent toujours être placés sur les tiges situées les plus à gauche.

4.1 Liste

4.1.1 Liste

Une liste est une succession ordonnée de n valeurs. La manière la plus simple de définir une liste est d'énumérer ses éléments en les plaçant entre crochets et en les séparant par des virgules. Par exemple, si l'on souhaite définir la liste des températures moyennes en France des 10 premiers jours de juillet 2022, on écrit :

La longueur d'une liste t, c'est-à-dire le nombre d'éléments qu'elle contient, est obtenue avec len(t). On la notera souvent |t|. Si t est une liste de longueur n, ses éléments sont indexés de 0 à n-1. On imaginera un tableau possédant n cases et contenant les éléments de la collection. Voici par exemple une représentation du tableau précédent de longueur n=10.

23	25	23	23	25	24	24	23	27	22
0	1	2	3	4	5		• • •		n-1

4.1. LISTE 55

Il est important de remarquer que l'indice de la première case est 0 (et non 1 comme dans certains langages de programmation) et que celui de la dernière case est n-1 (et non n). On a un accès direct à l'élément d'indice k pour tout $k \in [0, n[$ grâce à t[k]. Si l'on tente d'accéder à un élément t[k] pour $k \ge n$, Python lève une exception qui se solde par une erreur.

Python permet aussi d'accéder aux éléments de la liste en les indexant « par la fin ». On utilise pour cela des indices strictement négatifs $k \in [-n, 0]$.

23	25	23	23	25	24	24	23	27	22
-n	-n + 1				-5	-4	-3	-2	-1

Cependant, cette manière d'accéder aux listes est à priori proscrite aux concours. On se permettra cependant d'utiliser la syntaxe bien pratique t[-1] permettant d'accéder au dernier élément d'une liste.

Les listes Python peuvent contenir des valeurs de types différents. Elles peuvent même contenir d'autres listes.

```
1 In [2]: t = [9, 3.14159, "Hello", True, [3, 8]]
```

Cependant, contrairement aux tuple, l'utilisation des listes se fera essentiellement avec des valeurs ayant le même type. Quels que soient les éléments qu'elle contient, le type d'une liste est list, mais dans la signature d'une fonction, on notera list['a] pour désigner le type d'une liste d'éléments de même type 'a.

4.1.2 Parcours de liste

Nous avons vu dans le second chapitre comment par courir une liste. La manière la plus conventionnelle est d'effectuer une boucle sur un entier k qui va prendre successivement les indices admissibles pour la liste. Par exemple, la fonction suivante va tester si un entier x est un élément de la liste t:

```
1 def est_present(x, t):
2     """est_present(x: int, t: list[int]) -> bool"""
3     for i in range(len(t)):
4         if t[i] == x:
5             return True
6     return False
```

Il est cependant possible d'écrire la même fonction de manière plus concise, en itérant non par sur les indices de la liste, mais directement sur la liste elle-même. Pour cela, on utilise la syntaxe « for y in t » : dans ce cas, la boucle va itérer sur les éléments de la liste et y va prendre successivement les valeurs $t_0, t_1, \ldots, t_{n-1}$. La fonction est_present peut donc s'écrire ainsi :

Le fait qu'on puisse écrire « for y in t » fait de la liste t un objet *itérable*. D'autres objets Python possèdent cette propriété : les chaines de caractères et les tuples. La fonction possede_un_e vue au chapitre précédent s'écrit donc :

```
1 def possede_un_e(s):
2    """possede_un_e(s: str) -> bool"""
3    for c in s:
4         if c == 'e':
5             return True
6    return False
```

Les deux styles ont chacun leurs avantages et leurs inconvénients. L'utilisation d'une liste en tant qu'objet itérable a l'avantage de la concision, mais l'utilisation d'un indice et d'un range est parfois nécessaire.

Nous avons vu dans le second chapitre des algorithmes de réduction permettant de calculer la somme, le produit ou le maximum des éléments d'une liste. Ces algorithmes sont essentiels et nous ne les redétaillerons pas ici. Nous allons plutôt détailler deux nouveaux algorithmes : l'algorithme de Horner et la méthode de recherche dichotomique dans une liste triée.

Algorithme de Horner

Les listes sont de bons candidats pour représenter les polynômes. Le polynôme $P := p_0 + p_1 X + \dots + p_n X^n$ sera ainsi représenté par la liste $[p_0, p_1, \dots, p_n]$ de longueur n+1. Si x est un nombre, nous allons voir différents algorithmes pour calculer P(x). Si nous nous autorisons l'exponentiation **, nous obtenons une première implémentation de cet algorithme :

```
1 def eval0(p, x):
2    """eval0(p: list[int], x: int) -> int"""
3    ans = 0
4    for k in range(len(p)):
5        ans = ans + p[k] * x**k
6    return ans
```

Cependant, si on s'intéresse à la performance de notre fonction, l'utilisation de ** est problématique, car il n'existe pas d'instruction calculant la puissance d'un entier sur les processeurs. Python va donc devoir générer du code dont nous n'avons pas le contrôle et dont la performance est donc difficile à estimer. Si nous programmons nous-mêmes une fonction naïve calculant x^k , nous obtenons l'implémentation suivante :

```
1 def puiss(x, n):
2    """puiss(x: int, n: int) -> int"""
3    ans = 1
4    for _ in range(n):
5         ans = ans * x
6    return ans
7
8 def eval1(p, x):
9    """eval1(p: list[int], x: int) -> int"""
10    ans = 0
11    for k in range(len(p)):
12         ans = ans + p[k] * puiss(x, k)
13    return ans
```

On peut s'intéresser au nombre de multiplications effectuées par notre algorithme. Le calcul de x^k par la fonction puiss nécessite k multiplications, donc le calcul de p[k] * puiss(x, k) nécessite k+1 multiplications, ce qui donne un cout de

$$C_1(n) := \sum_{k=0}^{n} (k+1) = \frac{(n+1)(n+2)}{2}$$

multiplications. Il est possible de faire plus efficace en utilisant le fait qu'on a déjà calculé x^k lorsque l'on a besoin de calculer x^{k+1} . On utilise donc une variable xk qui va accumuler le produit des x et contenir x^k .

```
1 def eval2(p, x):
2    """eval2(p: list[int], x: int) -> int"""
3    ans = 0
4    xk = 1
5    for k in range(len(p)):
6     ans = ans + p[k] * xk
7     xk = xk * x
8    return ans
```

Cet algorithme ne nécessite que $C_2(n) := 2(n+1)$ multiplications. Il est donc bien plus efficace que notre premier algorithme puisque

$$\frac{C_2(n)}{C_1(n)} = \frac{4}{n+2} \xrightarrow[n \to +\infty]{} 0.$$

4.1. LISTE 57

Donc, plus n devient grand, plus la différence de performance entre les deux algorithmes va se faire sentir. On peut faire encore mieux en remarquant que

$$p_n x^n + p_{n-1} x^{n-1} + p_{n-2} x^{n-2} + \dots + p_1 x + p_0 = (((p_n x + p_{n-1})x + p_{n-2})x + \dots + p_1)x + p_0$$
$$= ((((0x + p_n)x + p_{n-1})x + p_{n-2})x + \dots + p_1)x + p_0.$$

On aboutit à l'algorithme suivant, appelé algorithme de Horner

```
1 def eval3(p, x):
2    """eval3(p: list[int], x: int) -> int"""
3    m = len(p)
4    ans = 0
5    for k in range(m):
6     ans = ans * x + p[m - 1 - k]
7    return ans
```

et qui nécessite seulement $C_3(n) := n + 1$ multiplications, soit deux fois moins que l'algorithme précédent.

Recherche dichotomique

Nous avons vu plus haut comment effectuer une recherche linéaire dans une liste de longueur n en effectuant au plus $C_1(n) := n$ comparaisons. Nous allons voir qu'il est possible de faire beaucoup plus efficace lorsque cette liste est triée dans l'ordre croissant. Prenons l'exemple de la liste croissante t = [1, 3, 7, 11, 12, 15, 19].

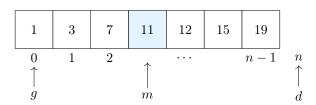
1	3	7	11	12	15	19
0	1	2	3	4	5	6

Si nous cherchons l'élément x, on peut commencer à le comparer à $t_3=11$.

- Si $x = t_3$, il est présent dans la liste et l'algorithme se termine.
- Si $x < t_3$, puisque la liste est triée dans l'ordre croissant, s'il est présent dans la liste, il est à gauche de 11. Il suffit donc de le chercher parmi les 3 premiers éléments. On va donc comparer x à $t_1 = 3$ et on recommence notre procédé.

Soit x va être égal à un moment à l'un des t_k et le procédé se termine, soit notre sous-liste de travail devient vide ce qui prouve que x ne fait pas partie de la liste initiale.

Pour implémenter notre algorithme, nous allons utiliser deux variables initialisées à $g \coloneqq 0$ et $d \coloneqq n$ (la longueur de notre liste). À chaque itération, la tranche de recherche sera l'ensemble des éléments ayant un indice k tel que $g \leqslant k < d$. On va considérer l'indice $m \coloneqq \lfloor (g+d)/2 \rfloor$ et comparer x à t_m .



- Si $x = t_m$, il est présent dans la liste et l'algorithme se termine.
- Si $x < t_m$, on continue notre recherche dans la tranche $g \leq k < m$.
- Si $x > t_m$, on continue notre recherche dans la tranche $m + 1 \leq k < d$.

Notre algorithme continue tant que la tranche de recherche est non vide, c'est-à-dire tant que g < d.

```
def dichotomie(x, t):
      """dichotomie(x: int, t: list[int]) -> bool"""
      g = 0
      d = len(t)
      while g < d:
          m = (g + d) // 2
          if x == t[m]:
               return True
          elif x < t[m]:
               d = m
10
                               # Cas où x > t[m]
11
               g = m + 1
12
      return False
13
```

Sur notre exemple possédant 7 éléments, l'algorithme de recherche linéaire nécessitait au plus 7 comparaisons alors que la recherche dichotomique nécessite au plus 3 comparaisons. Plus généralement, on montre facilement par récurrence que si t possède $n := 2^p - 1$ éléments, la recherche dichotomique nécessite au plus $p = \log_2(n+1)$ comparaisons. Sur un tableau de 1 023 = $2^{10} - 1$ éléments, cela fait seulement 10 comparaisons alors qu'une recherche linéaire peut en nécessiter 1 023. On montrera dans le chapitre sur la complexité que la recherche dichotomique sur un tableau de taille n quelconque nécessite au plus de l'ordre de $C_2(n) := \log_2 n$ comparaisons.

Exercice 1

 \Rightarrow Montrer que dans l'algorithme précédent, d-g est un variant de boucle, et donc que l'algorithme termine.

4.1.3 Création de liste

Nous avons vu comment créer des listes contenant quelques éléments. Si l'on souhaite créer des listes plus grandes, diverses méthodes existent.

Concaténation

Comme pour les chaines de caractères, il est possible de concaténer deux listes.

```
1 In [1]: [7, 2, 1] + [3, 5, 2]
2 Out[1]: [7, 2, 1, 3, 5, 2]
```

On peut même multiplier des listes par un entier.

```
1 In [2]: [1, 2, 3] * 3
2 Out[2]: [1, 2, 3, 1, 2, 3, 1, 2, 3]
```

Cela nous sera notamment utile pour créer une liste formée de n éléments identiques.

```
In [3]: n = 10

In [4]: [0] * n

Out[4]: [0, 0, 0, 0, 0, 0, 0, 0]
```

Compréhension

Pour créer des listes plus complexes, on utilise ce qu'on appelle une compréhension.

```
1 In [1]: n = 5
2
3 In [2]: t = [k**2 for k in range(n)]
4
5 In [3]: t
6 Out[3]: [0, 1, 4, 9, 16]
```

Il est possible de créer des listes de listes en imbriquant des listes définies en compréhension.

4.1. LISTE 59

```
1 In [4]: [[10 * i + j for i in range(4)] for j in range(3)]
2 Out[4]: [[0, 10, 20, 30], [1, 11, 21, 31], [2, 12, 22, 32]]
```

Si l'on souhaite, on peut même ne garder que les éléments vérifiant une certaine condition.

Slicing et copie

Il est enfin possible de créer une nouvelle liste en dupliquant la tranche d'une liste déjà existante. On appelle cette opération le *slicing*.

```
1 In [1]: t = [7, 1, 3, 9]
2
3 In [2]: a = t[1:3]
4
5 In [3]: a
6 Out[3]: [1, 3]
```

Plus généralement, si t est de longueur n et $(i,j) \in [0,n]^2$ sont tels que $i \leq j$, alors t[i:j] est la liste composée des objets t_i, \ldots, t_{j-1} . Lorsque l'indice i est omis, la valeur 0 est utilisée. Si l'indice j est omis, c'est la longueur de la liste qui est utilisée. On peut aussi utiliser la forme plus avancée t[i:j:p] où p>0 est le pas : cette tranche est alors formée des valeurs d'indices i+kp pour $i \leq i+kp < j$.

Exercice 2

⇒ Étant donné une liste t, comment obtenir la liste de tous les éléments d'indices impairs?

Si l'on souhaite faire une copie d'une liste t, on peut utiliser la syntaxe c = t[:]. Nous verrons cependant plus tard dans ce chapitre pourquoi cette technique fonctionne très bien pour des listes de booléens, d'entiers ou de flottants mais pose problème pour des listes de listes. Si l'on veut faire une copie de liste de listes, le mieux est d'utiliser la fonction deepcopy du module copy.

4.1.4 Modification des éléments

Les éléments d'une liste sont accessibles en lecture et en écriture. Il est donc possible de changer leurs éléments.

```
1 In [1]: note = [9, 10, 14]
2
3 In [2]: note[1] = 11
4
5 In [3]: note[2] = note[2] + 2
6
7 In [4]: note
8 Out[4]: [9, 11, 16]
```

Une liste de longueur n se comporte donc comme n variables avec lesquelles on peut travailler. Supposons par exemple

que l'on souhaite calculer les termes de la suite de Catalan définie par

$$c_0 \coloneqq 1$$
, et $\forall n \in \mathbb{N}$, $c_{n+1} \coloneqq \sum_{k=0}^{n} c_{n-k} c_k$.

Les premiers termes de cette suite sont 1, 1, 2, 5, 14, 42, etc. Pour calculer le n-ième terme de cette suite, on va créer un tableau t de longueur n+1 dans lequel on va ranger petit à petit les valeurs de c_k pour $0 \le k \le n$.

Exercice 3

 \Rightarrow Quel est le nombre de multiplications nécessaire au calcul de c_n ?

Nous savons que, grâce à la dichotomie, la recherche d'un élément dans une liste triée est considérablement plus rapide que dans une liste quelconque. Nous avions cependant passé sous silence la manière dont on peut trier une liste. De nombreux algorithmes sont dédiés à cette tâche. Les premiers que nous allons étudier s'effectuent « en place », c'est-à-dire qu'ils fonctionnent en effectuant une succession d'échanges d'éléments. Nous utiliserons pour cela la fonction

```
    def swap(t, i, j):
        """swap(t: list[int], i: int, j: int) -> NoneType"""
        t[i], t[j] = t[j], t[i]
```

qui échange les éléments t_i et t_j .

Tri par sélection

Le tri par sélection est le plus simple des algorithmes de tri et fonctionne de la manière suivante :

- On cherche d'abord l'élément le plus petit du tableau et on l'échange avec l'élément d'indice 0.
- On cherche ensuite le plus petit élément d'indice $i \ge 1$ du tableau et on l'échange avec l'élément d'indice 1.

On continue ainsi jusqu'à la fin du tableau. Cet algorithme est appelé « tri par sélection » car il fonctionne en sélectionnant de manière répétée le plus petit élément qui n'a pas encore été trié. Par exemple, si on l'applique sur la liste t = [5, 1, 2, 6], on passe par les étapes suivantes :

5	1	2	6
1	5	2	6
1	2	5	6
1	2	5	6

À chaque étape, les cases bleues représentent les éléments triés; ils sont donc à la bonne place dans notre tableau. La case rose représente le plus petit élément parmi ceux qui ne sont pas encore triés. Afin de rendre notre programme modulaire, on commence par écrire une fonction indice_minimum(t: list[int], i: int) -> int qui renvoie l'indice de l'élément le plus petit parmi les éléments $t_i, t_{i+1}, \ldots, t_{n-1}$.

4.1. LISTE 61

Si l'on souhaite calculer le nombre de comparaisons effectuées par cet algorithme, on constate que pour tout i tel que $0 \le i < n-1$, l'appel indice_minimum(t, i) effectue n-1-i comparaisons ligne 5. Cet algorithme effectue donc au total

$$C_s(n) := (n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2}$$

comparaisons.

Le tri par sélection est une méthode de tri simple qui est facile à comprendre et qui possède les propriétés suivantes :

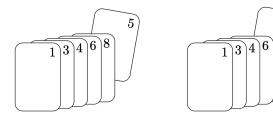
- Le nombre de comparaisons ne dépend que de la taille du tableau. Cette propriété peut être à notre désavantage dans certaines situations. Par exemple, le temps d'exécution du tri par sélection sera le même sur un tableau déjà trié et sur un tableau de nombres aléatoires.
- Le mouvement des données est minimal. Chacune des boucles en i n'effectue qu'un échange d'éléments du tableau. Quelle que soit la liste à trier, il y a donc exactement n-1 échanges dans un tri par sélection.

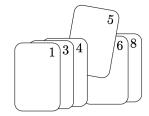
Exercice 4

 \Rightarrow Donner un invariant de la boucle présente ligne 11 prouvant que le tri par sélection effectue bien un tri de la liste t.

Tri par insertion

Le tri par insertion est l'algorithme que les gens utilisent généralement lorsqu'ils veulent trier les cartes qu'ils ont en main. On insère chaque carte, de la gauche vers la droite, dans la partie déjà triée qui se trouve sur la gauche. Dans une implémentation informatique de cet algorithme, on a besoin d'insérer la carte dans la partie déjà triée en effectuant des échanges successifs qui font remonter petit à petit la carte à insérer à sa position.





Insertion de la carte 5 dans une main déjà triée

Par exemple, si on l'applique sur la liste t = [5, 2, 1, 6], on passe par les étapes suivantes :

5	2	1	6
2	5	1	6
1	2	5	6
1	2	5	6

À chaque étape, les cases bleues représentent la main triée et la case rose représente la carte que l'on insère par échanges successifs dans notre main triée. Contrairement au tri par sélection, les éléments bleus ne sont pas toujours dans leur position finale puisqu'il est possible que ces éléments doivent plus tard faire place à des éléments plus petits qui seront insérés.

Si l'on souhaite calculer le nombre de comparaisons effectuées par cet algorithme, on constate que pour tout i tel que $1 \le i < n$, la boucle de la ligne 6 effectue au plus i comparaisons. Cet algorithme effectue donc au total au plus

$$C_i(n) \le 1 + 2 + \dots + (n-1) = \frac{n(n-1)}{2}$$

comparaisons. Contrairement au tri par sélection, ce nombre de comparaisons dépend non seulement de la taille de la liste, mais aussi de ses éléments.

- Si on effectue un tri par insertion sur une liste déjà triée, il effectue exactement n-1 comparaisons.
- Si on trie une liste triée dans l'ordre décroissant, on va effectuer exactement n(n-1)/2 comparaisons.

On peut démontrer qu'en moyenne, le tri par insertion effectue un nombre de comparaisons de l'ordre de $n^2/4$.

Le tri par insertion marche assez bien pour des tableaux qui ne sont pas aléatoires et que l'on rencontre souvent en pratique. Pour des tableaux « partiellement triés », il nécessite de l'ordre de n comparaisons. Nous nous contenterons d'une idée assez floue de ce que signifie ce terme; on peut dire cependant que les tableaux suivants sont partiellement triés :

- Un petit tableau qui a été ajouté à la fin d'un gros tableau trié.
- Un tableau avec seulement peu d'éléments qui ne sont pas au bon endroit.
- Un tableau dont tous les éléments ne sont pas loin de leur position finale.

En résumé, le tri par insertion est une excellente méthode pour les tableaux qui sont partiellement triés et pour les petits tableaux. Comme ces tableaux arrivent dans des parties intermédiaires d'autres algorithmes de tri plus avancés, nous le retrouverons dans des implémentations efficaces de tels algorithmes.

4.1.5 Ajout et suppression d'éléments

Si nous revenons à notre analogie où une liste fonctionne comme un porte-pantalon, l'image suivante correspond à une liste de 3 éléments :

Il est aisé d'ajouter un quatrième pantalon à côté du dernier. Les listes permettent d'effectuer efficacement cette opération avec la méthode append.

4.1. LISTE 63

```
1 In [1]: lst = [7, 2, 1]
2
3 In [2]: lst.append(5)
4
5 In [3]: lst
6 Out[3]: [7, 2, 1, 5]
```

La syntaxe de cette fonction diffère de ce que nous avons vu pour le moment. Cette syntaxe est héritée de ce qu'on appelle la programmation orientée objet et c'est la raison pour laquelle on parle de méthode et non de fonction. Cependant, la différence entre ces deux notions sera purement syntaxique en prépa où nous n'étudierons pas la programmation orientée objet : il faut simplement imaginer que ce que nous écrivons lst.append(5) aurait pu s'écrire append(1st, 5).

Remarquons que les instructions t = t + [x] et t-append(x) ajoutent toutes les deux x à la fin de t. Cependant, la première instruction crée une nouvelle liste alors que la seconde modifie la liste déjà existante. Outre le fait qu'une modification de liste est bien plus efficace que la création d'une nouvelle liste, ces deux opérations ne sont pas interchangeables. En pratique, la première instruction n'est presque jamais utile et son utilisation doit être considérée avec beaucoup de suspicion.

L'opération inverse, qui consiste à enlever le dernier élément d'une liste, est aussi disponible grâce à la méthode pop. Cette méthode agit de deux manières :

- Elle fonctionne par effet de bord et enlève le dernier élément de la liste.
- Elle renvoie la valeur de cet élément.

```
1 In [4]: x = lst.pop()
2
3 In [5]: lst
4 Out[5]: [7, 2, 1]
5
6 In [6]: x
7 Out[6]: 5
```

Bien entendu, si la valeur de cet élément ne nous intéresse pas, il est possible d'appeler lst.pop() et d'ignorer la valeur renvoyée. Enfin, si la liste lst est vide, un appel à lst.pop() va lever une exception et donc signaler une erreur.

Notons enfin l'existence d'une méthode extend qui fonctionne de manière similaire à la méthode append mais qui ajoute tous les éléments d'une liste à la fin d'une liste existente.

```
In [7]: lst.extend([9, 3, 5])

In [8]: lst

Out[8]: [7, 2, 1, 9, 3, 5]
```

Afin de mettre en oeuvre la méthode append, supposons que l'on souhaite écrire une fonction qui renvoie la liste de tous les nombres premiers inférieurs ou égaux à n. Nous remarquons que si $k \ge 2$ et si nous avons la liste de tous les nombres premiers strictement inférieurs à k, il est facile de savoir si k est premier : il suffit de voir si un des nombres premiers dont on dispose divise k. Ce principe nous permet d'écrire l'algorithme suivant

```
def admet_diviseur(n, t):
      """admet_diviseur(n: int, t: list[int]) -> bool"""
      for p in t:
          if n % p == 0:
              return True
      return False
6
  def liste_premiers(n):
      """liste_premiers(n: int) -> list[int]"""
      lst = []
10
      for k in range(2, n + 1):
11
          if not admet_diviseur(k, lst):
12
               lst.append(k)
13
      return 1st
14
```

On obtient ainsi

```
1 In [9]: liste_premiers(20)
2 Out[9]: [2, 3, 5, 7, 11, 13, 17, 19]
```

Nous verrons en exercice le crible d'Ératosthène qui résout le même problème de manière plus efficace.

Tri fusion

L'algorithme de tri que nous allons étudier dans cette section est basé sur une opération simple appelée fusion : regrouper deux listes ordonnées en une liste ordonnée plus grande. Cette opération conduit à une méthode de tri récursive de la famille « diviser pour régner » appelée tri fusion. Pour trier une liste, on divise la liste en deux parties, on trie les deux parties de manière récursive et on fusionne les deux résultats.

entrée	1	5	2	9	0	8	4	3
moitié de gauche triée	1	2	5	9	0	8	4	3
moitié de droite triée	1	2	5	9	0	3	4	8
fusion	0	1	2	3	4	5	8	9

Nous nous intéressons d'abord à l'algorithme de fusion. Pour cela, nous créons une liste vide à laquelle nous allons ajouter petit à petit les éléments des listes t_1 et t_2 par ordre croissant. Une fois qu'une des listes est épuisée, il suffit d'ajouter les éléments de l'autre liste.

```
def fusion(t1, t2):
       """fusion(t1: list[int], t2: list[int]) -> list[int]"""
3
      i1 = 0
      i2 = 0
      while i1 < len(t1) and i2 < len(t2):
           if t1[i1] <= t2[i2]:</pre>
               t.append(t1[i1])
               i1 = i1 + 1
           else:
10
               t.append(t2[i2])
11
               i2 = i2 + 1
12
      t.extend(t1[i1:])
13
      t.extend(t2[i2:])
14
      return t
```

Une fois l'algorithme de fusion écrit, le tri fusion s'écrit facilement.

- cas de base : Si la liste est vide ou ne possède qu'un seul élément, elle est triée.
- réduction : Si la liste est de de taille n, on la découpe en deux listes de tailles respectives $\lfloor n/2 \rfloor$ et $\lceil n/2 \rceil$. On trie ces listes de manière récursive que l'on fusionne ensuite.

On obtient alors l'implémentation suivante :

4.1. LISTE 65

```
1 def tri_fusion(t):
2     """tri_fusion(t: list[int]) -> list[int]"""
3     n = len(t)
4     if n <= 1:
5         return t[:]
6     n1 = n // 2
7     t1 = tri_fusion(t[0:n1])
8     t2 = tri_fusion(t[n1:n])
9     t = fusion(t1, t2)
10     return t</pre>
```

Nous verrons dans le chapitre sur la complexité que l'algorithme de tri fusion utilise de l'ordre de $n \log n$ comparaisons.

Tri rapide

Le tri rapide est aussi un algorithme de la famille « diviser pour régner ». Il fonctionne en partitionnant le tableau en deux sous-tableaux et en triant ces tableaux de manière indépendante. On commence par choisir au hasard un élément de notre tableau qu'on appelle *pivot* grâce à la fonction choice du module random.

- On génère ensuite le tableau smaller des éléments de t qui sont strictement inférieurs au pivot.
- De même, on génère le tableau equal des éléments de t qui sont égaux au pivot.
- Enfin, on génère le tableau greater des éléments de t qui sont strictement supérieurs au pivot.

On trie ensuite de manière récursive les tableaux smaller et greater avant de concaténer les tableaux obtenus.

```
import random

def quicksort(t):
    """quicksort(t: list[int]) -> list[int]"""

if len(t) <= 1:
    return t[:]

pivot = random.choice(t)

smaller = [x for x in t if x < pivot]
    equal = [x for x in t if x == pivot]

greater = [x for x in t if x > pivot]

return quicksort(smaller) + equal + quicksort(greater)
```

Nous verrons en exercice la « vraie » version du tri rapide qui ne crée pas de tableau auxiliaire mais s'effectue en place. Cette version effectue dans le pire des cas de l'ordre de $n^2/2$ comparaisons, mais on peut montrer qu'en moyenne, elle effectue seulement de l'ordre de $n \log n$ comparaisons.

4.1.6 Les objets Python

Le lecteur attentif se sera peut-être rendu compte que les listes avaient un comportement étrange lorsqu'elles étaient passées en argument d'une fonction. Pour mettre en valeur ce comportement, il peut être utile de jouer avec les deux fonctions suivantes :

```
1 def f(n):
2     """f(n: int) -> NoneType"""
3     n = n + 1

4     5 def g(t):
6     """g(t: list[int]) -> NoneType"""
7     for k in range(len(t)):
8          t[k] = t[k] + 1
```

Les deux essais suivants nous montrent bien que les entiers et les listes d'entiers réagissent de manière différente.

```
1 In [1]: a = 5
2
3 In [2]: f(a)
4
5 In [3]: a
6 Out[3]: 5
```

```
In [4]: a = [5, 5, 5]

In [5]: g(a)

In [6]: a

Out[6]: [6, 6, 6]
```

Cette différence de comportement peut d'ailleurs s'observer sans fonction. Pour la comprendre, nous avons besoin de revenir sur la notion d'objet et de variable en Python. L'idée même selon laquelle une variable est une boite contenant une valeur va d'ailleurs être mise à mal : c'était une simplification de la réalité que les listes viennent de mettre en valeur.

```
1 In [7]: a = [7, 2, 1]
2
3 In [8]: b = a
4
5 In [9]: a.append(5)
6
7 In [10]: a
8 Out[10]: [7, 2, 1, 5]
9
10 In [11]: b
11 Out[11]: [7, 2, 1, 5]
```

Si les variables a et b étaient réellement des boites contenant des valeurs, une modification de a n'aurait aucune influence sur b. Comme nous venons de voir sur cet exemple, ce n'est pas le cas. Pour comprendre, ce phénomène, il est bon de détailler la notion d'objet.

En Python, toutes les données sont représentées par des objets, que ce soient des entiers, des nombres flottants, des booléens, des chaines de caractères, des tuples, des listes et même des fonctions. Chaque objet possède un identifiant, un type et une valeur : on dit qu'en Python les valeurs sont boxées.

- L'identifiant d'un objet est l'adresse mémoire à laquelle il est stocké; on utilise aussi le nom de pointeur. Il ne change pas au cours de la vie de l'objet et deux objets distincts ont des identifiants distincts. Nous verrons cependant que deux objets différents peuvent avoir la même valeur.
- Le *type* d'un objet est aussi une propriété qui ne change pas au cours de sa vie. Pour l'instant, nous avons vu essentiellement les types bool, int, float, string, tuple et list.
- Enfin, un objet possède une *valeur* qui peut changer ou non au cours de sa vie, selon son type. Les valeurs des objets de type bool, int, float, string et tuple ne peuvent pas changer. On dit que ces types sont *immuables*. Le seul moyen d'avoir une nouvelle valeur est de créer un nouvel objet. Contrairement aux autres, le type list est *mutable* : les objets de type list ont une valeur qui peut changer au cours de leur vie.

Comme nous l'avons observé, une variable n'est pas une boite dans laquelle on met une valeur. C'est en fait une boite dans laquelle on met l'identifiant de l'objet auquel elle est associée. Par exemple, l'instruction

```
ı In [12]: a = 7
```

crée un objet de type int dont la valeur est 7 et associe la variable a à cet objet.

4.1. LISTE 67

```
1 In [13]: a = a + 1
```

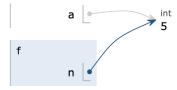
Python crée un nouvel objet de type int dont la valeur est 8 et associe le nom a à ce nouvel objet.

```
a e int
```

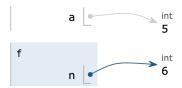
L'ancien objet de valeur 7 existe toujours, mais plus aucune variable ne pointe vers lui. Lors du prochain passage du ramasse-miette (garbage collector en anglais), cet objet sera supprimé et la mémoire qu'il utilise sera de nouveau disponible.

Nous pouvons maintenant comprendre pour quoi l'appel de la fonction f définie plus haut n'a aucun effet sur la variable a.

Lorsqu'on est à la ligne 5 et qu'on appelle la fonction f, l'objet de valeur 5 est passé à la fonction et une variable locale n est créée.



L'instruction n = n + 1 de la ligne 2 crée un nouvel objet de valeur 6 vers lequel pointe la variable n.



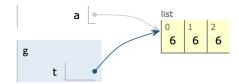
Lorsqu'on sort de la fonction, la variable n est détruite et a pointe toujours vers un objet de valeur 5.

Le cas de la fonction g est différent.

Lorsqu'on est à la ligne 6 et qu'on appelle la fonction g, l'objet de valeur [5, 5, 5] est passé à la fonction et une variable locale t est créée. Nous nous trouvons donc dans la situation où deux variables pointent vers le même objet; ce phénomène est appelé aliasing.

```
g t list 0 1 2 5 5 5
```

Contrairement à ce qui se passait dans le cas précédent où l'instruction $\mathtt{n} = \mathtt{n} + \mathtt{1}$ créait un nouvel objet, l'instruction $\mathtt{t}[\mathtt{k}] = \mathtt{t}[\mathtt{k}] + \mathtt{1}$ fait muter la liste t et l'on se retrouve dans l'état suivant :



Lorsqu'on va sortir de la fonction, la variable t sera détruite et a pointera toujours vers la liste qui a été modifiée par notre fonction.

Exercice 5

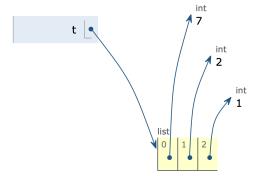
 \Rightarrow À quelle valeur est associée a après le script suivant?

```
1 a = [7, 2, 1]
2 b = a
3 b.append(5)
```

La réalité est encore plus complexe que cela. Comme nous l'avions dit, les cases d'une liste se comportent comme des variables. Donc lorsqu'on écrit

```
1 t = [7, 2, 1]
```

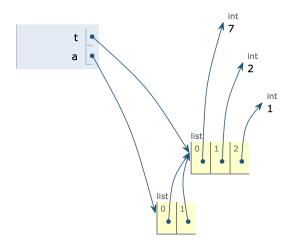
ce sont en fait les objets suivants qui sont créés.



La représentation qui a été faite plus haut ne pose cependant aucun problème puisque les entiers sont des valeurs immuables. Cependant, une telle représentation devient cruciale lorsqu'on commence à manipuler des listes d'objets mutables, comme des listes de listes.

```
1 t = [7, 2, 1]
2 a = [t, t]
3 t.append(5)
```

Juste avant l'exécution de la ligne 3, voici les relations entre les différents objets.



Après ce script, a va donc être associé à la valeur [[7, 2, 1, 5], [7, 2, 1, 5]].

Exercice 6

 \Rightarrow On souhaite créer une liste de n listes. Si l'on écrit

```
1 n = 3
2 a = [[]] * n
3 a[0].append(7)
```

la liste a va être associée à la valeur [[7], [7]]. Cependant, si on écrit

```
1 n = 3
2 a = [[] for _ in range(n)]
3 a[0].append(7)
```

la liste a va être associée à la valeur [[7], []]. Dessiner dans les deux cas les différents objets juste avant l'exécution de la 3^e ligne.

On retiendra de l'exercice précédent que si l'on souhaite créer une liste de n zéros, l'expression [0] * n fonctionne parfaitement, mais si l'on veut créer une liste de n listes vides, il ne faut surtout pas utiliser [[]] * n mais plutôt [[] for _ in range(n)].

En résumé, on retiendra les points essentiels suivants :

- En Python, les données sont représentées par des objets.
- Certains objets sont de types *immuables*: bool, int, float, str, tuple. D'autres, comme list, sont *mutables*. Si une variable est associée à un objet d'un type immuable, on peut l'imaginer comme une boite contenant la valeur de cet objet. Cependant, si une variable est associée à un objet d'un type mutable, il est essentiel de se souvenir qu'elle pointe vers cet objet. Lorsque deux variables pointent vers un même objet, on dit qu'il y a *aliasing*.
- Une affectation a = expr fait pointer a vers l'objet en lequel expr s'évalue. Si a est associée à une liste, les instructions a.append(x), a.pop() et a[k] = expr font muter cette liste. Le slicing a[i:j] crée une nouvelle liste dont les cases sont associées aux objets correspondants de la liste a. On comprend maintenant pourquoi l'instruction c = t[:] est à éviter lorsque t est une liste de listes.
- En Python, le passage des paramètres se fait *par objet* : à l'intérieur d'une fonction, les paramètres sont des variables locales associées aux objets passés lors de l'appel de la fonction. Si ces objets sont mutables, la fonction peut agir par effet de bord et changer leur valeur. Ces valeurs seront ensuite observables par l'appelant.

Exercice 7

⇒ 1. Quelle est la valeur de a après le script suivant?

```
\begin{bmatrix} 1 & a = [7, 2, 3, 5, 1] \\ 2 & b = a[1:4] \\ 3 & b[0] = b[0] + 1 \end{bmatrix}
```

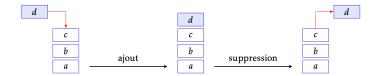
2. Et après le script suivant?

```
1 a = [[7], [2], [3], [5], [1]]
2 b = a[1:4]
3 b[0].append(9)
```

4.2 Structures séquentielles

4.2.1 Pile

Une *pile* (*stack* en anglais) est une structure de données linéaire qui se distingue par ses conditions d'accès et d'ajout d'éléments : c'est le principe du « dernier arrivé, premier servi » (principe du LIFO pour Last In, First Out). Un peu comme une pile d'assiettes, c'est la dernière assiette posée sur une pile qui sera la première utilisée.



Une réalisation concrète de cette structure de données fournit, outre la structure, les fonctions suivantes :

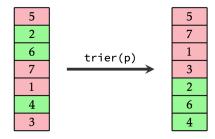
- Une fonction de création d'une pile vide.
- Une fonction déterminant si une pile est vide.
- Une fonction permettant d'empiler un élément au sommet de la pile.
- Une fonction permettant de dépiler et de renvoyer l'élément au sommet d'une pile non vide.
- Une fonction permettant de connaître l'élément en haut d'une pile non vide.

La signature d'une pile d'entiers est donc la suivante :

```
1 stack_new() -> stack[int]
2 stack_is_empty(s: stack[int]) -> bool
3 stack_push(s: stack[int], x: int) -> NoneType
4 stack_pop(s: stack[int]) -> int
5 stack_peek(s: stack[int]) -> int
```

Exercices 8

Ecrire une fonction trier(p: stack[int]) -> NoneType qui prend en argument une pile p d'entiers et qui modifie l'ordre de ses éléments de sorte qu'en fin de traitement les nombres pairs soient placés sous les nombres impairs. On pourra pour ce faire créer et utiliser une ou plusieurs piles auxiliaires.



⇒ Expliquer comment implémenter une pile à l'aide d'une liste Python. On proposera une implémentation des 5 fonctions dont la spécification est donnée plus haut.

Comme nous avons pu le voir dans l'exercice précédent, la structure de liste Python est tellement bien adaptée à la structure de pile que lorsqu'on aura besoin d'une pile, on utilisera une liste et on se limitera à l'usage des méthodes append, pop et à l'accès au dernier élément par s [-1].

4.2.2 File

Une file (queue en anglais) est une structure de données linéaire fonctionnant sur le principe du FIFO (First In, First Out). On peut l'imaginer horizontale : on rajoute des éléments par la droite et on les enlève par la gauche. Cette fois, l'analogie se fait avec une file d'attente. Les clients arrivent par la droite et la caisse est à gauche. Le prochain client servi étant celui qui attend depuis le plus longtemps.

Une réalisation concrète de cette structure fournit les fonctions suivantes :

- Une fonction de création d'une file vide.
- Une fonction déterminant si un file est vide.
- Une fonction permettant d'enfiler un élément à droite de la file.

- Une fonction permettant de défiler et de renvoyer l'élément à gauche d'une file non vide.
- Une fonction permettant de connaître l'élément à gauche d'une file non vide.

La signature d'une file d'entiers est donc :

```
1 queue_new() -> queue[int]
2 queue_is_empty(q: queue[int]) -> bool
3 queue_push(q: queue[int], x: int) -> NoneType
4 queue_pop(q: queue[int]) -> int
5 queue_peek(q: queue[int]) -> int
```

Exercice 9

⇒ Expliquer comment implémenter une file à l'aide d'une liste Python. On proposera une implémentation des 5 fonctions dont la spécification est donnée plus haut. Pourquoi cette implémentation est-elle inefficace?

En pratique, on n'utilisera donc pas de liste Python lorsqu'on aura besoin d'une file. On utilisera plutôt une « double ended queue » ou « deque » telle qu'elle est disponible dans le module collections.

```
1 import collections
2
3 file = collections.deque() # Pour créer une file vide
4 n = len(file) # Pour connaître la longueur de la file
5 file.append(x) # Pour enfiler un élément à droite
6 x = file.popleft() # Pour défiler un élément à gauche
```

4.2.3 File de priorité

Une file de priorité (priority queue en anglais) est une structure de donnée linéaire où chaque élément de la file possède une priorité. Intuitivement, c'est avec une telle structure de données que vous fonctionnez lorsqu'on vous donne du travail. Supposons que vous ayez plusieurs tâches à accomplir, listées par importance décroissante : travailler le cours de maths du jour, finir le DM de physique pour la semaine prochaine et faire un gros score à flappy bird. On se représente cet ensemble de tâches comme ceci

	Cours de Maths	DM de Physique	Flappy Bird
	1.0	7.0	1 000.0

la flèche nous indiquant que la prochaine tâche à accomplir est de relire votre cours de maths. Les nombres flottants placés en dessous de chaque tâche sont des priorités : plus ce nombre est bas, plus la tâche est prioritaire. Si vous apprenez que votre prochaine colle de français a lieu dans trois jours, il faut vous ménager du temps pour la préparer. Vous insérez donc cette nouvelle tâche dans la file avec une priorité de 3.0.

	Cours de Maths	Colle de Français	DM de Physique	Flappy Bird
	1.0	3.0	7.0	1 000.0

Une réalisation concrète d'une file de priorité fournit donc les fonctions suivantes :

- Une fonction de création d'une file de priorité vide.
- Une fonction déterminant si une file de priorité est vide.
- Une fonction permettant d'enfiler un élément, accompagné d'une priorité.
- Une fonction permettant de défiler l'élément ayant la priorité la plus basse.
- Une fonction permettant de connaître l'élément ayant la priorité la plus basse.

La signature d'une file de priorité d'entiers est donc :

```
pqueue_new() -> pqueue[int]
pqueue_is_empty(q: pqueue[int]) -> bool
pqueue_push(q: pqueue[int], x: int, p: float) -> NoneType
pqueue_pop(q: pqueue[int]) -> tuple[int, float]
pqueue_peek(q: pqueue[int]) -> tuple[int, float]
```

Exercice 10

⇒ Expliquer comment implémenter une file de priorité d'entiers à l'aide d'une liste du tuples composés d'un entier et d'un nombre flottant.

Cette implémentation est cependant loin d'être efficace. Lorsque nous aurons besoin d'une meilleure efficacité, nous pourrons utiliser le module heapq.

```
1 import heapq
2
3 filep = []  # Pour créer une file de priorité vide
4 n = len(filep)  # Pour connaître la longueur de la file
5 heapq.heappush(filep, (p, x)) # Pour insérer un élément x de priorité p
6 p, x = heapq.heappop(filep)  # Pour défiler un élément de priorité minimale
```

4.2.4 Dictionnaire

Un dictionnaire présente de nombreuses similitudes avec les listes, si ce n'est qu'au lieu d'accéder aux éléments par le biais d'un indice, on y accède par le biais d'une $cl\acute{e}$. On crée un dictionnaire en suivant la syntaxe $\{c1: v1, \ldots, cn: vn\}$ où c_1, \ldots, c_n sont des clés, nécessairement deux à deux distinctes, et v_1, \ldots, v_n les valeurs qui leur sont associées. Ainsi, $\{\}$ crée un dictionnaire vide.

Si d est un dictionnaire et c est une clé :

- L'expression c in d renvoie un booléen indiquant si la clé c est présente dans le dictionnaire.
- L'expression d[c] renvoie la valeur associée à la clé si celle-ci est présente dans le dictionnaire.
- L'instruction d[c] = v crée une nouvelle association si la clé n'est pas présente dans le dictionnaire, et modifie l'association précédente sinon.
- L'instruction del d[c] supprime l'entrée associée à la clé c dans le dictionnaire.
- On peut enfin connaitre le nombre de clés présentes dans un dictionnaire avec la fonction len(d).

Le type d'un dictionnaire est dict. En pratique les clés seront toutes d'un même type et les valeurs seront aussi toutes du même type. Dans la signature des fonctions, on notera dict[str, int] un dictionnaire dont les clés sont des chaines de caractères et les valeurs sont des entiers.

Il est possible d'itérer sur les clés d'un dictionnaire avec la construction for k in d.keys(), mais on peut aussi directement itérer sur les clés et les valeurs avec la construction for k, v in d.items(). Par exemple :

```
In [3]: for k, v in prof.items():

2 ...: print("Le cours de", k, "est enseigné par M.", v)

3 Le cours de Info est enseigné par M. Fayard

4 Le cours de Maths est enseigné par M. Fayard

5 Le cours de Physique est enseigné par M. Villegas
```

Ces deux méthodes sont celles préconisées par le programme de prépa, mais il est plus naturel en Python d'utiliser directement for k in d qui a le même effet que for k in d.keys(). Le même programme s'écrit alors :

```
1 In [4]: for k in prof:
2 ...: print("Le cours de", k, "est enseigné par M.", prof[k])
```

Exercice 11

⇒ Écrire une fonction occ(lst: list[str]) -> dict[str, int] renvoyant un dictionnaire d tel que si s est une chaine de caractères, d[s] est le nombre d'occurrences de s dans la liste lst.

Il est possible de simuler un ensemble à l'aide d'un dictionnaire. Un ensemble d'entiers s sera tout simplement un dictionnaire dict[int, NoneType]. On ajoutera un entier a à cet ensemble à l'aide de l'instruction s[a] = None et

4.3. EXERCICES 73

on le supprimera avec l'instruction del s[a].

4.3 Exercices

4.3.1 Liste

Liste

Parcours de liste

Exercice 1: Listes bicolores

Soit L une liste d'entiers. On dit que L est *bicolore* si on peut la séparer en deux sous-listes monotones de sens contraires. Par exemple, la liste [1, 2, 3, 5, 6, 10, 8, 3, 2] est bicolore car on peut la séparer en [1, 2, 3, 5, 6] + [10, 8, 3, 2]. En revanche, la liste [4, 5, 6, 2, 4] n'est pas bicolore. Par convention, les listes monotones sont bicolores.

Écrire une fonction bicolore(t: list[int]) -> bool qui prend en argument une liste t et renvoie le booléen True si la liste t est bicolore et le booléen False sinon.

Exercice 2: Plus petit entier manquant

Écrire une fonction entier_manquant(t: list[int]) -> int qui renvoie le plus petit entier naturel absent d'un tableau d'entiers naturels. Par exemple, pour t = [1, 3, 7, 6, 4, 1, 2, 0], cette fonction devra renvoyer 5.

Création de liste

Exercice 3: Nombre d'occurences

Écrire une fonction $occ(a: list[int], m: int) \rightarrow list[int]$ prenant en entrée une liste d'entiers a telle que tous ses éléments k vérifient $0 \le k < m$, et renvoyant un tableau t de longueur m telle que pour tout $k \in [0, m[, t[k]$ est le nombre d'occurences de k dans la liste a.

Modification des éléments

Exercice 4: Rotation

On appelle rotation d'un tableau t le fait de décaler tous les éléments d'une place vers la droite, à l'exception du dernier qui est placé en première place. Par exemple, la rotation du tableau [1, 2, 3, 4] est le tableau [4, 1, 2, 3].

- 1. Rédiger une fonction rotation(t: list[int]) -> list[int] qui renvoie un nouveau tableau égal à la rotation du tableau initial.
- 2. Rédiger une fonction rotation_en_place(t: list[int]) -> NoneType qui modifie le tableau pour le remplacer par sa rotation.
- 3. Rédiger une fonction rotation_multiple(t: list[int], k: int) -> list[int] qui renvoie un nouveau tableau égal à k rotations du tableau t.

Exercice 5: Partition, drapeaux hollandais

On suppose que l'on dispose d'une fonction swap(t: list[int], i: int, j: int) -> NoneType qui échange les éléments d'indice <math>i et j dans le tableau t.

1. On souhaite écrire une fonction partition(t: list[int], p: int) -> NoneType qui prend en entrée un tableau de longueur n et qui le réordonne afin que tous les éléments du tableau strictement inférieurs à p se retrouvent en début de tableau et que tous ceux qui sont supérieurs ou égaux à p se retrouvent en fin de tableau. On effectuera au plus n appels à swap. Par exemple, avec p = 6, le tableau

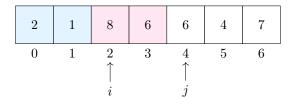
|--|

sera par exemple transformé en

2	1 4	6	6	8	7
---	-----	---	---	---	---

On pourra pour cela initialiser des variables i et j à 0 et maintenir l'invariant suivant

74 CHAPITRE 4. LISTE



La variable i indiquant la fin de la zone bleue des entiers < p déjà traités et la variable j indiquant la fin de la zone rose des entiers $\ge p$ déjà traités, l'indice j étant l'indice du prochain entier à traiter.

- 2. Écrire une fonction partition_hollandais(t: list[int], p: int) -> NoneType qui prend en entrée une liste t de longueur n et qui la réordonne en 3 zones successives : les entiers strictement inférieurs à p, les entiers égaux à p et ceux strictement supérieurs à p. On effectuera au plus 2n appels à swap.
- 3. Modifier la fonction précédente afin qu'elle n'effectue qu'au plus n appels à swap.

Ajout et suppression d'éléments

Exercice 6: Fusion

Écrire une fonction fusion(t1: list[int], t2: list[int]) -> list[int] qui prend en entrée deux listes triées dans l'ordre croissant et qui renvoie une liste triée dans l'ordre croissant contenant les entiers des deux listes. On pourra compléter le programme suivant :

Les objets Python

4.3.2 Structures séquentielles

Pile

Exercice 7: Calculatrice polonaise inverse

L'écriture polonaise inverse des expressions arithmétiques place l'opérateur après les opérandes. Cette notation ne nécessite aucune parenthèse ni aucune règle de priorité. Ainsi, l'expression polonaise inverse décrite par la liste [1, 2, 3, '*', '+', 4, '*'] désigne l'expression traditionnellement notée $(1+2\times3)\times4$. La valeur d'une telle expression peut être calculée facilement en utilisant une pile pour stocker les résultats intermédiaires. Pour cela, on observe un à un les éléments de l'expression et on effectue les actions suivantes :

- Si on voit un nombre, on le place sur la pile.
- Si on voit un opérateur binaire, on récupère les deux nombres au sommet de la pile, on leur applique l'opérateur, et à la fin du processus il reste exactement un nombre sur la pile qui est le résultat.

Écrire une fonction eval(a: list) -> int prenant en paramètre une liste représentant une expression en notation polonaise inverse composée d'additions et de multiplications de nombres entiers et renvoyant la valeur de cette expression. Par exemple eval([1, 2, 3, '*', '+', 4, '*']) devra renvoyer 28.

File

Exercice 8: Temps d'attente

Dans cet exercice, on se propose d'évaluer le temps d'attente de clients à des guichets, en comparant la solution d'une unique file d'attente et la solution d'une file d'attente par guichet. Pour cela, on modélise le temps par une variable globale, qui est incrémentée à chaque tour de boucle. Lorsqu'un nouveau client arrive, il est placé dans une file sous la forme d'un entier égal à la valeur de l'horloge, c'est-à-dire égal à son heure d'arrivée. Lorsqu'un client est servi, c'est-à-dire lorsqu'il sort de sa file d'attente, on obtient son temps d'attente en faisant la soustraction de la valeur courante de l'horloge et de la valeur qui vient d'être retirée de la file. L'idée est de faire tourner une telle simulation relativement longtemps, tout en totalisant le nombre de clients servis et le temps d'attente cumulé sur tous les clients. Le rapport de ces deux quantités nous donne le temps d'attente moyen. On peut alors comparer plusieurs stratégies

4.3. EXERCICES 75

(une ou plusieurs files, choix d'une file au hasard lorsqu'il y en a plusieurs, choix de la file où il y a le moins de clients, etc).

On se donne un nombre n de guichets (par exemple n=5). Pour simuler la disponibilité d'un guichet, on peut se donner un tableau d'entiers \mathtt{dispo} de taille n. La valeur de $\mathtt{dispo}[\mathtt{i}]$ indique le nombre de tours d'horloge où le guichet i sera occupé. En particulier, lorsque cette valeur vaut 0, cela veut dire que le guichet est libre et peut donc servir un nouveau client. Lorsqu'un client est servi par le guichet i, on choisit un temps de traitement pour ce client, au hasard entre 0 et n et on l'affecte à $\mathtt{dispo}[\mathtt{i}]$. À chaque tour d'horloge, on réalise deux opérations :

- On fait apparaitre un nouveau client.
- Pour chaque guichet i
 - S'il est disponible, il sert un nouveau client (pris dans sa propre file ou dans l'unique file, selon le modèle), le cas échéant.
 - sinon, on décrémente dispo[i].

Écrire un programme qui effectue une telle simulation, sur 100 000 tours d'horloge, et affiche au final le temps d'attente moyen. Comparer avec différentes stratégies.

File de priorité

Diction naire

Exercice 9 : Somme donnée

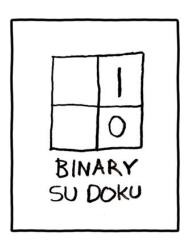
On cherche à écrire une fonction prenant en entrée une liste d'entiers ${\tt t}$ et un entier ${\tt s}$ et qui nous indique si la liste possède deux entiers dont la somme vaut ${\tt s}$.

- 1. Écrire une telle fonction somme(t: list[int], s: int) -> bool répondant à la question.
- 2. On souhaite désormais écrire une version plus efficace de cette fonction qui ne parcourt qu'une seule fois la liste. En maintenant à jour l'ensemble des entiers déjà observés, écrire une fonction répondant à la même question et ne parcourant qu'une seule fois la liste.

76 CHAPITRE 4. LISTE

Chapitre 5

Représentation des données



5.1	Les	entiers	78
	5.1.1	Décomposition en base b	78
	5.1.2	Représentation mémoire des entiers non signés	80
	5.1.3	Représentation mémoire des entiers signés	80
5.2	\mathbf{Les}	nombres flottants	83
	5.2.1	Représentation mémoire des flottants	83
	5.2.2	Problèmes liés à l'arithmétique des nombres flottants	85
5.3	Cara	actères et chaines de caractères	87
	5.3.1	Codes ASCII et Unicode	87
	5.3.2	Lecture et écriture dans un fichier	88
5.4	Exe	rcices	90
	5.4.1	Les entiers	90
	5.4.2	Les nombres flottants	92
	5.4.3	Caractères et chaines de caractères	93

Un ordinateur possède une mémoire vive, appelée RAM pour « Random Access Memory ». C'est cette mémoire qui matérialise l'état du système. Concrètement, les barrettes mémoire contiennent des milliards de condensateurs qui peuvent être chargés ou déchargés. Lorsqu'un condensateur est chargé, il représente le bit 1. S'il est déchargé, il représente le bit 0.

condensateur	0	1	2	3	4	5	6	7	8	9	10	
état	0	1	0	0	1	0	1	1	0	0	1	

Une succession de 8 bits est appelée un octet: c'est la plus petite quantité de mémoire adressable par un ordinateur. Les quantités de mémoire se comptent en kilooctets (1 $000 \approx 2^{10}$ octets), mégaoctets ($10^6 \approx 2^{20}$ octets), gigaoctets ($10^9 \approx 2^{30}$ octets) et téraoctets ($10^{12} \approx 2^{40}$ octets).

Dans ce chapitre, nous allons voir comment une succession de 0 et de 1 peut être utilisée pour représenter des entiers et des nombres flottants.

5.1 Les entiers

5.1.1 Décomposition en base b

L'écriture de l'entier 1984 décrit un nombre formé de 4 unités, 8 dizaines, 9 centaines et 1 millier :

$$1984 = 4 \times 10^{0} + 8 \times 10^{1} + 9 \times 10^{2} + 1 \times 10^{3}.$$

Le choix de faire des paquets en utilisant des puissances de 10 est cependant arbitraire. On peut tout aussi bien décider d'utiliser des puissances de 2, 12, 16 ou 60. Si l'on choisit d'utiliser des puissances de b, on dit qu'on décompose notre nombre en base b.

Proposition 5.1.1

Soit $b \ge 2$ un entier et $w \in \mathbb{N}$. Alors, pour tout $n \in [0, b^w]$, il existe un unique w-uplet $(d_0, d_1, \dots, d_{w-1})$ d'éléments de [0, b] tel que

$$n = \sum_{k=0}^{w-1} d_k b^k.$$

Remarques

- \Rightarrow On parle de décomposition en base b de l'entier n. Les d_k sont appelés chiffres de n en base b.
- \Rightarrow Les chiffres correspondant aux plus grandes puissances de b sont dits plus significatifs ou de poids fort. Ceux qui correspondent aux petites puissances de b sont dits moins significatifs ou de poids faible.
- \Rightarrow Pour tout $n \in \mathbb{N}^*$, il existe un unique $w \in \mathbb{N}^*$ et un unique w-uplet $(d_0, d_1, \dots, d_{w-1})$ d'éléments de [0, b[tel que $d_{w-1} \neq 0$ et $n = \sum_{k=0}^{w-1} d_k b^k$. On écrit

$$n = \underline{d_{w-1} \cdots d_1 d_{0_b}}.$$

Lorsqu'on parle de la décomposition de n en base b, c'est de cette écriture qu'il s'agit. Par exemple $13 = \underline{13}_{10}$ car $13 = 3 \times 10^0 + 1 \times 10^1$ et $13 = \underline{1101}_2$ car $13 = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3$. Par convention, la décomposition de 0 est vide, quelle que soit la base.

 \Rightarrow En base 2, les valeurs possibles pour un chiffre sont 0 et 1; on parlera indifféremment de *bit* ou de chiffre. Étant donné l'importance de la base 2 en informatique, il est bon de connaître les premières puissances de 2.

								2^{8}		
1	2	4	8	16	32	64	128	256	512	1 024

- ⇒ Si la base est supérieure à dix, on a un problème pour l'écriture : il y a moins de chiffres usuels que de chiffres de la base. Le seul cas que l'on rencontre en pratique est celui de la base 16 dite hexadécimale. La convention est d'utiliser les lettres de A à F pour représenter les chiffres de 10 à 15.
- ⇒ Les bases 2, 16 et dans une moindre mesure 8, sont couramment utilisées en informatique. Par conséquent, il est possible d'écrire les littéraux directement dans ces bases. En Python, la syntaxe est :

```
1 In [1]: 0b10010
2 Out[1]: 18
3
4 In [2]: 0xff
5 Out[2]: 255
6
7 In [3]: 0o77
8 Out[3]: 63
```

- ⇒ Si l'on veut obtenir les chiffres de 137 en base 10, on commence par écrire que $137 = 13 \times 10 + 7$: on effectue la division euclidienne de 137 par 10. Le chiffre de poids faible d_0 est donc 7, et avant cela on a les chiffres de 13. De même, $13 = 1 \times 10 + 3$, donc $d_1 = 3$, et on continue en remplaçant 13 par 1. Enfin $1 = 0 \times 10 + 1$, donc $d_2 = 1$. On remplace 1 par 0 et on a terminé car 0 n'a « pas de chiffre ». On a donc $137 = \underline{137}_{10}$.
- \Rightarrow Si au contraire on dispose de la liste des chiffres en base b et que l'on souhaite obtenir n, le plus efficace est de remarquer que

$$\sum_{k=0}^{w-1} d_k b^k = d_0 + b \left(d_1 + b \left(d_2 + \cdots b \left(d_{w-2} + b d_{w-1} \right) \right) \right).$$

5.1. LES ENTIERS 79

Cette écriture est à la base de l'algorithme de Horner : on part de 0 et on multiplie successivement notre valeur par 10 avant de lui ajouter d_k , pour toutes les valeurs de k allant en décroissant de w-1 à 0. Si l'on souhaite calculer $\underline{137}_{10}$, on effectue donc les calculs

$$0 \xrightarrow[\times 10+1]{} 1 \xrightarrow[\times 10+3]{} 13 \xrightarrow[\times 10+7]{} 137.$$

Exercices 1

- \Rightarrow Calculer $\underline{1000110}_2$ et $\underline{C7}_{16}$.
- ⇒ Donner l'écriture binaire de 59 et de 31. Quel phénomène général peut-on remarquer dans le deuxième cas?
- \Rightarrow Comment s'écrit $\underline{102}_3$ en base 5?

La fonction $eval_lsd(b: int, d: list[int]) \rightarrow int (lsd pour least significant digit) renvoie l'entier dont l'écriture en base <math>b$ est

$$d_{w-1} \dots d_{0_h}$$

en utilisant l'algorithme de Horner.

La fonction digits_lsd(b: int, n: int) -> list[int] renvoie la liste des chiffres de n en base b, le chiffre le moins significatif étant en premier.

```
1 def digits_lsd(b, n):
2     """digits_lsd(b: int, n: int) -> list[int]"""
3     d = []
4     while n > 0:
5          d.append(n % b)
6          n = n // b
7     return d
```

Ces deux fonctions sont bien entendu à connaître sur le bout des doigts.

Proposition 5.1.2

Soit $b \ge 2$ un entier. Un entier n > 0 s'écrit avec $w = 1 + \lfloor \log_b(n) \rfloor$ chiffres en base b.

Les opérations d'addition et de multiplication apprises à l'école primaire fonctionnent tout aussi bien en base $b \ge 2$ qu'en base 10. Entrainez-vous avec les exercices suivants pour vous convaincre de cela.

Exercices 2

- \Rightarrow Effectuer l'addition $\underline{100110}_2 + \underline{1011}_2$ en base 2, c'est-à-dire sans jamais convertir un nombre en base 10.
- \implies Effectuer la multiplication $\underline{100110}_2 \times \underline{1011}_2$ en base 2.
- \Rightarrow Écrire les tables de multiplication en base 3. Calculer le produit $\underline{1022}_3 \times \underline{221}_3$ en travaillant en base 3.

La décomposition en base 2 nous permet de revenir sur l'algorithme d'exponentiation rapide dont nous avons donné une version récursive dans le chapitre sur les fonctions et dont nous donnons ici une version itérative. Étant donné $n \in \mathbb{N}$, on effectue sa décomposition en base 2

$$n = \sum_{k=0}^{w-1} d_k 2^k$$

et on remarque que pour tout x

$$x^n = x^{\sum_{k=0}^{w-1} d_k 2^k} = \prod_{k=0}^{w-1} \left[x^{(2^k)} \right]^{d_k}.$$

Comme $d_k \in \{0,1\}$, quel que soit $k \in [0, w-1]$, le terme entre crochets est soit présent dans le produit (si $d_k = 1$) soit absent (si $d_k = 0$). De plus, il est aisé de calculer les valeurs successives de x^{2^k} car chaque terme est le carré du précédent. On obtient ainsi l'algorithme d'exponentation rapide dans sa version itérative.

5.1.2 Représentation mémoire des entiers non signés

La décomposition en base 2 nous donne un moyen de représenter les nombres positifs à l'aide d'une séquence de bits. Comme cette décomposition s'effectue uniquement pour les entiers positifs, on parle de représentation des entiers non signés. C'est cette représentation que les processeurs utilisent pour manipuler les entiers non signés. Il ne sont cependant capables que de travailler avec des entiers ayant une largeur w fixée. Aujourd'hui, un processeur 64 bits peut travailler avec des entiers codés sur 8, 16, 32 ou 64 bits.

```
Proposition 5.1.3 Pour une largeur de w \in \mathbb{N}, le plus grand entier non signé représentable est 2^w - 1.
```

Avec 8 bits, on peut coder tous les entiers entre 0 et $2^8 - 1 = 255$. Avec 16 bits, on peut coder tous les entiers entre 0 et $2^{16} - 1 = 65535$. Avec 32 bits on peut coder tous les entiers entre 0 et $2^{32} - 1 = 4294967295$, soit quelques milliards. Avec 64 bits on peut coder tous les entiers entre 0 et quelques milliards de milliards, ce qui est suffisant pour de nombreuses applications.

Ces représentations sur une largeur fixe ont cependant un défaut : la somme et le produit de deux entiers représentables ne sont pas toujours représentables. Par exemple, avec une largeur de 8 bits, 250 et 12 sont représentables, mais 250 + 12 ne l'est pas. Lorsque ce problème survient, on dit qu'il y a un dépassement de capacité (overflow en anglais) et le résultat obtenu est calculé modulo 256. Dans notre exemple, le calcul sur 8 bits de 250 + 12 donnera donc 6! Certains langages comme le C ne cachent pas cette caractéristique des processeurs et le programmeur a la responsabilité de s'assurer que ce problème n'arrive jamais (ou d'agir en conséquence). Python travaille quant à lui avec des entiers de taille variable. L'avantage est qu'il peut manipuler des entiers aussi grands que l'on souhaite; on ne risque pas de dépassement de capacité. L'inconvénient est que les opérations usuelles sur ces entiers sont bien plus lentes qu'en C et que leur temps d'exécution dépend de la taille des entiers.

5.1.3 Représentation mémoire des entiers signés

Les entiers considérés pour le moment étaient supposés positifs, mais les processeurs proposent bien évidemment de travailler avec des types signés, qui permettent de représenter des valeurs négatives. D'une manière ou d'une autre, il est clair que le signe nous « coutera » un bit : il faut stocker l'information + ou -. Il est assez naturel d'imaginer la stratégie suivante :

- Le bit le plus significatif détermine le signe : un 1 signifie que le nombre est positif, un 0 qu'il est négatif.
- La valeur absolue du nombre est stockée de manière standard sur les autres bits.

Implicitement, nous considérons ici que l'on travaille avec des entiers d'une largeur w fixée. Ainsi, l'expression bit le plus significatif désigne le bit d_{w-1} de poids maximal dans cette largeur, ce qui explique pourquoi il peut être égal à zéro.

Bien que cette méthode paraisse raisonnable, elle a deux défauts :

- Le nombre 0 a deux représentations : 00...0 et 10...0. Cela a pour conséquence de ne pouvoir stocker que $2^w 1$ valeurs différentes, par exemple les entiers de $-(2^{w-1} 1)$ à $2^{w-1} 1$ inclus. On perd une place puisque zéro en prend deux.
- Les opérations arithmétiques usuelles ne sont pas très simples à effectuer : essentiellement, pour ajouter deux nombres, on est obligé de regarder leur bit de poids fort pour déterminer leur signe et de distinguer les cas.

5.1. LES ENTIERS 81

En réalité, aucun ordinateur n'utilise cette représentation pour les entiers signés. L'immense majorité utilise la représentation par complément à deux.

Proposition 5.1.4

Soit $w \in \mathbb{N}^*$. Pour tout $n \in [-2^{w-1}, 2^{w-1}]$, il existe un unique w-uplet $(b_0, b_1, \dots, b_{w-1})$ de bits tel que

$$n = \left(\sum_{k=0}^{w-2} b_k 2^k\right) - b_{w-1} 2^{w-1}.$$

Remarques

- \Rightarrow Le bit b_{w-1} est nul si et seulement si $n \ge 0$. Si tel est le cas (b_0, \ldots, b_{w-1}) est la décomposition de n en base 2. Sinon n < 0, $b_{w-1} = 1$ et (b_0, \ldots, b_{w-1}) est la décomposition de $n + 2^w$ en base 2.
- \Rightarrow On appelle valeur en complément à deux de la suite de bits (b_0,\ldots,b_{w-1}) l'entier

$$\left(\sum_{k=0}^{w-2} b_k 2^k\right) - b_{w-1} 2^{w-1}.$$

On dit que le bit de poids fort a un poids négatif.

- \Rightarrow Une même suite de bits (b_0,\ldots,b_{w-1}) dans une largeur w, correspondra donc à deux entiers différents : $\sum_{k=0}^{w-1}b_k2^k$ en non signé et $\sum_{k=0}^{w-2}b_k2^k-b_{w-1}2^{w-1}$ en signé par complément à deux. Fixons par exemple $w\coloneqq 4$, et notons respectivement $\mathbf{v}_4(b_3b_2b_1b_0)$ et $\mathbf{v}_4(b_3b_2b_1b_0)$, les valeurs non signées et signées associées à une suite de bits.
 - $vs_4(0000) = v_4(0000) = 0.$
 - $vs_4(0100) = v_4(0100) = 4.$
 - $-vs_4(1100) = -8 + 4 = -4 \text{ et } v_4(1100) = 8 + 4 = 12.$
 - $vs_4(1111) = -8 + 4 + 2 + 1 = -1$ et $v_4(1111) = 8 + 4 + 2 + 1 = 15$.

Exercice 3

- \Rightarrow On fixe $w \coloneqq 8$.
 - 1. Quel est le plus grand entier non signé représentable, c'est-à-dire la plus grande valeur $v_8(bits)$ que l'on peut obtenir?
 - 2. Quels sont les plus petits et plus grands entiers signés représentables?
 - 3. Quelle suite de bits donne $vs_8(bits) = 0$? 127? -1? -128?

Proposition 5.1.5

Pour une largeur $w \in \mathbb{N}^*$

- Le plus grand entier signé représentable en complément à 2 est $2^{w-1} 1$.
- Le plus petit entier signé représentable en complément à 2 est -2^{w-1} .

Remarques

⇒ Explosion d'Ariane 5 : Le vol inaugural de la fusée Ariane 5 a eu lieu le 4 juin 1996. Comme le montre l'illustration ci-dessous, il s'est terminé, un peu moins de 37 secondes après le décollage, par ce que nous appellerons pudiquement

un Rud (Rapid Unplanned Dissassembly).

Dommage.

La fusée et son chargement avaient couté 500 millions de dollars. La commission d'enquête a rendu son rapport au bout de deux semaines. Il s'agissait d'une erreur de programmation dans le système inertiel de référence. À un moment donné, un nombre codé en virgule flottante qui représentait la vitesse horizontale de la fusée par rapport à la plateforme de tir était converti en un entier signé sur 16 bits. Malheureusement, le nombre en question était plus grand que 32 767 et la conversion a été incorrecte.

Extrait du code source (en ADA) d'Ariane 5. On peut voir un certain nombre de conversions d'un entier 32 bits vers un entier 16 bits avec protection contre les dépassements de capacité, et, soulignée en rouge, une conversion non protégée d'un flottant vers un entier 16 bits.

⇒ L'année 2012 a été marquée par une contribution majeure au patrimoine culturel de l'humanité : la vidéo Gangnam Style. À cette époque, le nombre de vues d'une vidéo YouTube était codé sur un entier 32 bits signé. Bien évidemment, ce choix, qui limite le nombre de vues à 2 147 483 647, n'était absolument pas adapté à un chef-d'œuvre de cette ampleur. Début 2014, il est devenu évident qu'on allait bientôt avoir un dépassement de capacité. Fort heureusement, YouTube a apporté la modification nécessaire à temps : les vues sont maintenant codées sur un entier signé de 64 bits, ce qui laisse de la marge, la valeur maximale étant 9 223 372 036 854 775 807. Baby shark peut rester tranquille pour de nombreuses années.

Proposition 5.1.6

Pour toute largeur $w \in \mathbb{N}$ et toute suite de bits (b_0, \dots, b_{w-1}) , on a

$$v_w(bits) \equiv vs_w(bits) \mod 2^w$$
.

Remarques

- ⇒ Cette propriété est la raison d'être de la représentation par complément à deux.
- ⇒ Nous n'allons pas rentrer dans les détails qui ne nous intéressent pas vraiment, mais l'avantage principal de la représentation en complément à deux, illustré par l'exercice ci-dessous, est qu'on peut utiliser essentiellement le

même circuit physique pour les opérations arithmétiques sur les entiers signés et non signés.

Exercice 4

 \Rightarrow 1. Poser les additions binaires suivantes :

- 2. Interpréter ces additions comme des opérations sur des entiers non signés de 4 bits. On ne gardera donc que les quatre bits les moins significatifs du résultat. Mathématiquement, cela revient à faire quoi?
- 3. Reprendre la question précédente en faisant cette fois une interprétation signée, en complément à deux, sur quatre bits.
- 4. Quel critère simple, portant sur les deux bits de retenue de poids les plus forts, peut-on utiliser pour déterminer s'il y a eu un « vrai » dépassement de capacité? Par « vrai » dépassement de capacité, on entend une situation dans laquelle le résultat mathématique de l'opération n'est pas représentable avec la largeur fixée.

5.2 Les nombres flottants

5.2.1 Représentation mémoire des flottants

Pour écrire un nombre réel de manière approchée, les physiciens ont pris l'habitude d'utiliser l'écriture scientifique. Par exemple

$$e^{\pi} \approx 23.14 = 2.314 \times 10^{1} = \left(2 + \frac{3}{10} + \frac{1}{10^{2}} + \frac{4}{10^{3}}\right) \times 10^{1}.$$

On dit qu'un tel nombre est représenté avec 4 chiffres significatifs. Remarquons que contrairement aux entiers naturels, qui admettent tous une décomposition en base b, seuls les nombres décimaux peuvent s'écrire de manière exacte sous la forme

$$\pm \left(\sum_{k=0}^{p-1} \frac{m_k}{10^k}\right) \times 10^e$$

où $m_k \in [0, 9]$. Même certains nombres rationnels comme 1/3 ne peuvent pas s'écrire de la sorte. Bien entendu, ces remarques faites en base 10 sont aussi valables en base 2, plus familière des ordinateurs.

Définition 5.2.1

Soit $p \in \mathbb{N}^*$. On dit qu'un réel x est un nombre flottant représentable avec une mantisse de p bits lorsqu'il existe $m_0, \ldots, m_{p-1} \in \{0, 1\}$ et $e \in \mathbb{Z}$ tels que

$$x = \pm \left(\sum_{k=0}^{p-1} \frac{m_k}{2^k}\right) 2^e.$$

Si x est non nul, il est possible d'imposer $m_0 = 1$; cette écriture est alors unique. L'ensemble des nombres flottants représentables avec une mantisse de p bits est noté \mathcal{F}_p .

Remarques

- \Rightarrow Par exemple $2.5 = (1 + 0/2 + 1/4) \times 2^1 \in \mathcal{F}_3$.
- \Rightarrow Si x est non nul et $m_0 = 1$, cette écriture est appelée décomposition en base 2 normalisée. Les autres écritures comme $x = (0 + 1/2 + 1/4) \times 2^4$ sont dites dénormalisées
- \Rightarrow Tous les entiers compris entre $-2^p + 1$ et $2^p 1$ sont des éléments de \mathcal{F}_p .

Exercice 5

 \Rightarrow Montrer que les rationnels $r = \pm a/b$ (avec a et b premiers entre eux) tels que b n'est pas une puissance de 2 ne sont pas des éléments de \mathcal{F}_p . En particulier 0.1 = 1/10 et 1/3 n'appartiennent pas à \mathcal{F}_p .

Proposition 5.2.2

Soit $x \in \mathbb{R}$. Alors il existe un élément f de \mathcal{F}_p minimisant la distance de x à \mathcal{F}_p . De plus

$$|x - f| \le u_p |x|$$
 avec $u_p := 2^{-p}$.

Remarques

- \Rightarrow Les éléments de \mathcal{F}_p permettent donc d'approcher n'importe quel réel avec une erreur relative inférieure à u_p . Cet élément u_p est appelé epsilon de \mathcal{F}_p .
- \Rightarrow Pour une valeur de x, f est unique sauf dans le cas particulier où x est au milieu de deux éléments successifs de \mathcal{F}_p . Dans ce cas, un seul de ces deux éléments a une décomposition en base 2 normalisée telle que $m_{p-1} = 0$. C'est cet élément f qu'on appelle arrondi de x à la précision \mathcal{F}_p .

Définition 5.2.3

Si $p, q \in \mathbb{N}^*$, on note $\mathcal{F}_{p,q}$ l'ensemble formé

— des réels x de la forme

$$x = \pm \left(m_0 + \frac{m_1}{2} + \frac{m_2}{4} + \dots + \frac{m_{p-1}}{2^{p-1}}\right) 2^e$$

où
$$m_0, \dots, m_{p-1} \in \{0, 1\}$$
 et $-2^{q-1} + 2 \le e \le 2^{q-1} - 1$.

- des éléments $+\infty$ et $-\infty$.
- de l'élément noté NAN (Not a Number)

Remarques

- \Rightarrow Il y a en fait deux zéros, notés 0^+ et 0^- , mais ils sont le plus souvent affichés de la même façon.
- \Rightarrow Si x est non nul, le plus souvent, il est possible d'imposer $m_0 = 1$. Ce n'est cependant pas possible pour les nombres de la forme

$$x = \pm \left(0 + \frac{m_1}{2} + \frac{m_2}{4} + \dots + \frac{m_{p-1}}{2^{p-1}}\right) 2^e$$

pour $e = -2^{q-1} + 2$. De tels nombres sont dits dénormalisés.

- ⇒ Les processeurs actuels proposent en général deux types de nombres flottants.
 - Le format simple précision, codé sur 32 bits, utilise p=24 et q=8. On a alors $u=2^{-24}\approx 5.9\times 10^{-8}$.
 - Le format double précision, codé sur 64 bits, utilise p=53 et q=11. On a alors $u=2^{-53}\approx 1.1\times 10^{-16}$.

C'est le format double précision auquel Python nous donne accès avec son type float. Le plus petit nombre strictement positif représentable est de l'ordre de 10^{-324} et le plus grand nombre représentable est de l'ordre de 10^{308} .

- ⇒ Représenter un réel à l'aide d'une succession de bits revient donc à coder son signe, sa mantisse et son exposant. Avec les nombres flottants double précision de la norme IEEE 754, on se donne 64 bits pour stocker ces trois données. Si $x \in \mathcal{F}_{53,11}$ est non nul et $-1022 \le e \le 1023$, on code, dans l'ordre
 - Le signe, qui ne nécessite qu'un seul bit : 0 code le signe positif et 1 le signe négatif.
 - L'exposant, qui se code sur 11 bits. L'entier e est compris entre -1022 et 1023 on code l'écriture binaire de e + 1023 qui est un entier entre 1 et 2046.
 - La mantisse, qui se code sur 52 bits : comme $m_0 = 1$, il suffit de coder m_1, \ldots, m_{52} .
- ⇒ Dans la plage de 11 bits dévolue à l'exposant, les entiers $0...0_2 = 0$ et $1...1_2 = 2047$ ne sont pas utilisés dans l'explication précédente. Le nombre 0 est représenté par un exposant e égal à -1023, donc codé $0...0_2 = 0$, avec une mantisse dont tous les bits sont nuls. Il y a bien deux 0, un 0^+ et un 0^- puisque le bit donnant le signe peut prendre les deux valeurs 0 ou 1 (les 63 autres bits sont à zéro). L'exposant décalé égal à 2047 est utilisé pour les situations particulières ($+\infty$, $-\infty$ et d'autres choses plus compliquées comme NaN). Dans ce cas, tous les bits dévolus à l'exposant sont égaux à 1.

Charles Leclerc semble avoir un problème sur l'un de ses capteurs de vitesse

5.2.2 Problèmes liés à l'arithmétique des nombres flottants

Overflow et underflow

Le problème le plus simple à comprendre est celui du dépassement arithmétique (overflow en anglais), qui survient lorsqu'on dépasse le plus grand nombre représentable, qui est de l'ordre de 10^{308} en double précision. Dans ce cas, le résultat est $+\infty$ ou $-\infty$.

```
In [1]: a = 2.0**1023

In [2]: a

Out[2]: 8.98846567431158e+307

In [3]: 2.0 * a

Out[3]: inf
```

De même, pour les flottants strictement positifs, il peut y avoir dépassement par valeurs inférieures, ou underflow. Dans ce cas, le nombre renvoyé est 0 (plus précisément 0^+ dans notre cas).

```
1 In [4]: 2.0**(-1074)
2 Out[4]: 5e-324
3
4 In [5]: 2.0**(-1075)
5 Out[5]: 0.0
```

Des études ont montré que même lors de calculs intermédiaires, de tels nombres n'apparaissaient presque jamais. Ces problèmes peuvent donc essentiellement être ignorés.

Inexactitude de la représentation, arrondis

Les arrondis sont plus problématiques et sont liés au fait que les nombres flottants n'ont qu'un nombre fini de chiffres significatifs. Deux types d'arrondis entrent en jeu.

Le premier est dû au fait que les ordinateurs travaillent en base 2 alors qu'ils échangent le plus souvent des informations avec l'utilisateur et le programmeur en base 10. Par exemple, lorsqu'on écrit

```
In [1]: x = 0.1

In [2]: x

Out[2]: 0.1
```

on pourrait facilement être dupé et croire que 0.1 est représentable de manière exacte en double précision. Or 0.1 = 1/10 n'appartient à aucun des \mathcal{F}_p puisque 10 n'est pas une puissance de 2. Il n'est donc pas représentable de manière exacte par un nombre flottant, un peu comme 1/7 = 0.142857142857 n'est pas un nombre décimal (le souligné signifie que le

groupe de chiffres se répète à l'infini). Si l'on effectue un développement de 1/10 en base 2, on obtient $1.100\underline{1100}\times 2^{-4}$ (encore une fois, le groupe de chiffres se répète à l'infini). Lorsque 0.1 est entré dans le shell, Python va effectuer son développement en base 2. Comme ce développement est infini et qu'il travaille en double précision, il ne va garder que les 53 premiers bits et arrondir 0.1 à un nombre légèrement différent, avant de stocker ce nombre dans x. C'est un arrondi de conversion de bases. Pour afficher la valeur de x à l'utilisateur, il va le reconvertir en base 10 et un autre arrondi de conversion va faire qu'il affiche 0.1. Mais il ne faut pas oublier que ce n'est pas 0.1 qui est stocké dans x.

Le second problème est plus fondamental : les ensembles \mathcal{F}_p ne sont stables ni par addition, ni par soustraction, ni par multiplication ; encore moins par division. Par exemple

$$x := (1 + 0/2 + 1/4) \times 2^1 \in \mathcal{F}_3$$
 et $y := (1 + 0/2 + 0/4) \times 2^{-2} \in \mathcal{F}_3$,

mais

$$x + y = (1 + 0/2 + 1/4 + 1/8) \times 2^1 \notin \mathcal{F}_3$$

car x+y possède 4 chiffres significatifs. Pour chaque opération élémentaire (addition, soustraction, multiplication, division) entre deux nombres flottants, le processeur se trouve donc dans l'incapacité de représenter le résultat exact par un nombre flottant : il va devoir effectuer un arrondi arithmétique. Même si + et * restent commutatives, ces arrondis leur font perdre leur associativité. Plus le nombre d'opérations élémentaires va être grand, plus ces arrondis vont nous éloigner du résultat attendu.

Exercice 6

⇒ Observez les lignes suivantes et commentez.

```
1 In [1]: 1.0 + 2.0**(-53) + (-1.0)
2 Out[1]: 0.0
3
4 In [2]: 1.0 + (-1.0) + 2.0**(-53)
5 Out[2]: 1.1102230246251565e-16
```

Ces phénomènes ne sont pas anodins et ne doivent pas être pris à la légère. Par exemple, si l'on veut tester l'égalité de deux flottants et qu'il existe une légère différence entre eux due aux arrondis, on aura un résultat surprenant!

```
1 In [3]: 0.1 + 0.1 + 0.1 == 0.3
2 Out[3]: False
3
4 In [4]: import math
5
6 In [5]: math.sqrt(10)**2 == 10.0
7 Out[5]: False
```

On retiendra qu'il ne faut jamais faire de test d'égalité entre deux nombres flottants. En pratique, on ne se posera pas la question de savoir si a == b, mais plutôt de savoir si abs(a - b) <= eps * abs(a) où eps est un nombre « petit », à choisir selon notre application ($\varepsilon := \sqrt{u} \approx 10^{-8}$ est souvent un bon choix).

Nous avons vu pour le moment des calculs où les erreurs introduites par les arrondis étaient négligeables devant les grandeurs manipulées. Mais ce n'est pas toujours le cas. Supposons par exemple que l'on souhaite calculer

$$u_n := \int_0^1 x^n e^x dx$$

pour tout $n \in \mathbb{N}$. Un encadrement élémentaire de l'intégrande nous montre que

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant \int_0^1 x^n e \, \mathrm{d}x = \frac{e}{n+1}$$

ce qui prouve par le théorème des gendarmes que u_n tend vers 0 lorsque n tend vers $+\infty$. Si l'on veut calculer explicitement u_n , on remarque que $u_0 = e - 1$ et une intégration par partie nous donne

$$\forall n \in \mathbb{N}, \quad u_{n+1} = e - (n+1)u_n.$$

Le programme suivant permet donc de calculer u_n .

```
import math

def integrale(n):
    """integrale(n: int) -> float"""
    u = math.exp(1.0) - 1.0
    for k in range(n):
        u = math.exp(1.0) - (k + 1) * u
    return u
```

```
In [6]: [integrale(n) for n in [0, 5, 10, 20]]
2 Out[6]: [1.718281828459045, 0.395599547802016,
3 0.22800151529345358, -129.26370813285942]
```

Les premières valeurs de u_n calculées sont réalistes, mais u_{20} est totalement faux. Ce phénomène était prévisible, car si $\alpha \in \mathbb{R}$ et (v_n) est la suite définie par

$$v_0 := \alpha$$
, et $\forall n \in \mathbb{N}$, $v_{n+1} := e - (n+1)v_n$

alors, en définissant l'erreur $\varepsilon_n \coloneqq v_n - u_n$, on obtient facilement $\varepsilon_{n+1} = -(n+1)\varepsilon_n$ et donc

$$\forall n \in \mathbb{N}, \quad \varepsilon_n = (-1)^n n! \varepsilon_0.$$

Si α est une valeur approchée de e-1 telle que $|\varepsilon_0|=|\alpha-(e-1)|\propto 10^{-16}$, comme $20!\propto \times 10^{18}$, on en déduit que $|v_{20}-u_{20}|\propto 100$. Donc si l'on effectue une erreur de calcul de l'ordre de 10^{-16} pour u_0 , même si les calculs suivants sont exacts, l'erreur absolue obtenue pour le 20^e terme de la suite (u_n) est de l'ordre de 100, ce qui est beaucoup plus grand que l'ordre de grandeur de u_{20} puisque $0\leqslant u_{20}\leqslant e/21\approx 0.13$. Certains algorithmes numériques comme celui-ci sont *instables* et rendent les calculs avec des nombres flottants inexploitables. D'autres sont *stables* et peuvent donc être utilisés avec des nombres flottants. L'étude de la stabilité des algorithmes numériques dépasse le cadre du programme des classes préparatoires.

Quelques catastrophes dues à une mauvaise utilisation des nombres flottants

Il y a un nombre de catastrophes qui sont attribuables à une mauvaise gestion de l'arithmétique des nombres flottants. Dans le premier exemple, cela s'est payé en vies humaines.

- Missile Patriot : En février 1991, pendant la guerre du Golfe, une batterie américaine de missiles Patriot, à Dharan (Arabie Saoudite), a échoué dans l'interception d'un missile Scud irakien. Le Scud a frappé un baraquement de l'armée américaine et a tué 28 soldats. La commission d'enquête a conclu à un calcul incorrect du temps de parcours du scud, dû à un problème d'arrondi. Les nombres étaient représentés en virgule fixe sur 24 bits. Le temps était compté par l'horloge interne du système en dixièmes de seconde. Malheureusement, 1/10 n'a pas d'écriture finie dans le système binaire : 1/10 = 0.1 (dans le système décimal) = 0.0001100110011001100110011... (dans le système binaire). L'ordinateur de bord arrondissait 1/10 à 24 chiffres, d'où une petite erreur dans le décompte du temps pour chaque dixième de seconde. Au moment de l'attaque, la batterie de missile Patriot était allumée depuis environ 100 heures, ce qui a entrainé une accumulation des erreurs d'arrondi de 0.34 s. Pendant ce temps, un missile Scud parcourt environ 500 m, ce qui explique que le Patriot soit passé à côté de sa cible. Ce qu'il aurait fallu faire c'est redémarrer régulièrement le système de guidage du missile.
- Bourse de Vancouver: Un autre exemple où les erreurs de calcul ont conduit à une erreur notable est le cas de l'indice de la Bourse de Vancouver. En 1982, elle a créé un nouvel indice avec une valeur nominale de 1000. Après chaque transaction boursière, cet indice était recalculé et tronqué après le troisième chiffre décimal et, au bout de 22 mois, la valeur obtenue était 524.881, alors que la valeur correcte était 1098.811. Cette différence s'explique par le fait que toutes les erreurs d'arrondi étaient dans le même sens: l'opération de troncature diminuait à chaque fois la valeur de l'indice.

5.3 Caractères et chaines de caractères

5.3.1 Codes ASCII et Unicode

Le code ASCII associe un caractère à chaque entier entre 0 et 127, ce qui correspond à 7 bits non signés. Ces caractères peuvent être classés en trois grandes catégories :

- Caractères alphanumériques : les chiffres et les lettres minuscules et majuscules. Seules les lettres utilisées en anglais font partie du code ASCII, donc pas de « é », de « ñ », de « ß »...
- Autres caractères imprimables: les signes de ponctuation, quelques symboles ()+, *, }, etc) et l'espace.

h

1

 \mathbf{c}

 \mathbf{m}

w

a

k

11

	0	1	2	3	4	5	6	7	8	9
0										
10										
20										
30				!	"	#	\$	%	&	,
40	()	*	+	,	-		/	0	1
50	2	3	4	5	6	7	8	9	:	;
60	<	=	>	?	@	A	В	С	D	Е
70	F	G	Н	I	J	K	L	M	N	О
90	D	\cap	D	C	т	TT	17	7.7.7	v	17

90

100

110

120

d

 \mathbf{n}

Х

o

у

 $p \mid q \mid r$

 \mathbf{Z}

— Caractères non imprimables : la tabulation, les différents caractères correspondant à un retour à la ligne, le caractère nul, etc.

Comme les caractères étaient presque systématiquement codés sur 8 bits, les codes 128 à 255 étaient « libres » : ils ont pendant très longtemps été utilisés pour coder les caractères spécifiques aux différentes langues (signes diacritiques, lettres supplémentaires, etc). Cependant ces extensions posaient deux problèmes :

h

S

t.

g

- Elles n'étaient pas standardisées, puisqu'elles différaient d'une langue à l'autre et qu'il y avait même plusieurs extensions concurrentes pour une même langue. En pratique, jusqu'à la fin des années 2000, il y avait une chance sur deux que tous les caractères accentués contenus dans un mail soient remplacés par une bouillie infâme avant de parvenir au destinataire.
- Elles permettaient plus ou moins de gérer les langues européennes ou au moins les langues basées sur l'alphabet latin, mais étaient totalement inappropriées au chinois, au japonais, etc.

Le standard Unicode a été développé à partir de la fin des années 1980. À l'heure actuelle, il définit des codes pour 144 697 caractères, ce qui permet de gérer l'ensemble des langues, ainsi que de nombreux caractères supplémentaires comme les Emojis, par exemple. Ce standard définit trois représentations binaires UTF-8, UTF-16 et UTF-32, et il est assez complexe : nous ne rentrerons pas dans les détails. Dans tous les cas, les *codepoints* (l'entier associé à un caractère) ne sont pas modifiés pour les caractères appartenant au code ASCII. On peut obtenir un caractère à partir de son code Unicode grâce à la fonction chr.

```
1 In [1]: ord('A')
2 Out[1]: 65
3
4 In [2]: ord('é')
5 Out[2]: 233
```

On peut obtenir un caractère à partir de son code UNICODE grâce à la fonction chr. C'est d'ailleurs le moyen le plus simple d'obtenir des caractères non disponibles sur votre clavier.

```
1 In [3]: "I " + chr(9829) + " les Lazos."
2 Out[3]: 'I o les Lazos.'
```

5.3.2 Lecture et écriture dans un fichier

Python permet d'ouvrir des fichiers texte en lecture ou en écriture. Pour Python, un fichier n'est qu'une séquence de caractères. Une fois que le fichier aura été ouvert par le programme, celui-ci maintiendra un marqueur fictif à la position courante qui nous indique où sera lue ou écrit la prochaine séquence. Un fichier est ouvert avec la fonction open :

```
f = open("/Users/fayard/Desktop/fichier.txt", 'r')
```

Le premier argument est une chaine de caractères contenant le chemin complet du fichier. Le second argument est le mode d'ouverture du fichier : 'r' (pour read) pour une ouverture en lecture seule, 'w' (pour write) pour une ouverture avec les droits d'écriture et la position du

marqueur en fin de fichier. Une fois que le travail dans le fichier sera fini, il faudra prendre soin de bien fermer le fichier avec la commande

```
1 f.close()
```

Une fois ouvert, la fonction read permet de lire le fichier en entier et le renvoie sous la forme d'une chaine de caractères :

```
1 texte = f.read()
```

Dans la même famille, la fonction readlines() permet de lire le fichier en entier, mais renvoie non pas une seule chaine de caractères, mais une liste de chaines de caractères, chaque chaine correspondant à une ligne du fichier. Attention, cette ligne se terminera par le caractère de retour à la ligne.

```
lignes = f.readlines()
```

Mais en général, on lira et on traitera le fichier ligne par ligne avec le fonction readline() qui lit une ligne et la renvoie en tant que chaine de caractères. Bien entendu, cette chaine finira aussi par un caractère de retour à la ligne. Après cet appel, le curseur sera positionné au début de la ligne suivante.

```
ligne = f.readline()
```

On saura qu'on est à la fin du fichier lorsque cette méthode nous renverra une chaine de caractères vide.

Mais la méthode sans doute la plus utilisée pour parcourir un fichier en lecture est de remarquer que le descripteur du fichier f est un itérable. La boucle

```
for ligne in f:
```

va donc permettre d'effectuer une boucle sur toutes les lignes du fichier. Cette boucle est équivalente à

```
for ligne in f.readlines():
```

mais a l'avantage de faire lire le fichier à notre programme ligne après ligne alors que l'utilisation de readlines() va charger le fichier en mémoire en entier avant même de traiter la première ligne.

Il est courant de lire des fichiers textes contenant des données organisées, comme par exemple un fichier Csv (Comma Separated Values) qui est le format le plus simple pour enregistrer les données d'un tableur. Le fichier décrit dans un fichier texte chaque ligne du document, où chaque colonne est séparée par une virgule. Si par exemple, vous souhaitez avoir une liste des élèves de la classe avec leur âge, le fichier Csv correspondant sera simplement

```
Linus, Torvalds, 54
Donald, Knuth, 86
Master, Yoda, 900
```

Afin de séparer proprement ce type de ligne, on utilisera la fonction split. Par exemple, si ligne est égal à "Linus, Torvalds, 54", la commande data = ligne.split(',') stockera dans la variable data la liste

```
["Linus", "Torvalds", "54"].
```

Si le fichier est ouvert en écriture, on peut écrire dedans à l'aide de la méthode write.

```
1 f.write("Ma jolie histoire.")
```

Le programme spécifie que la documentation de ces fonctions doit vous être rappellée mais il est important de savoir les utiliser proprement une fois ce rappel fait.

5.4 Exercices

5.4.1 Les entiers

Décomposition en base b

Exercice 1: Calculs en base 2

Réaliser les opérations suivantes en base 2, sans passer par la base 10, à l'aide des algorithmes appris à l'école primaire.

$$\underline{101010}_2 + \underline{11000}_2$$
, $\underline{110101}_2 - \underline{11001}_2$, $\underline{11101}_2 \times \underline{1011}_2$, $\underline{1100101}_2/\underline{1011}_2$.

Exercice 2: Somme et produit en base b

Dans cet exercice, un entier $d \in \mathbb{N}$ est représenté par sa décomposition en base $b \ge 2$, c'est-à-dire par une liste d'entiers $d_k \in [0, b]$ pour $0 \le k < n$, telle que

$$d = \sum_{k=0}^{n-1} d_k b^k.$$

Les chiffres de poids faible sont situés en début de liste alors que les chiffres de poids fort sont quant à eux en fin de liste. Le but de cet exercice est d'implémenter l'addition et la multiplication en base b, comme on l'a appris à l'école primaire.

- 1. Écrire une fonction chiffre(d: list[int], k: int) -> int renvoyant le chiffre d_k du nombre d. Si k est plus grand que la longueur de la liste d, cette fonction devra renvoyer 0.
- 2. Écrire une fonction addition(d: list[int], e: list[int], b: int) -> list[int] réalisant l'addition de deux nombres d et e en base b.
- 3. (a) Écrire une fonction multiplication_chiffre(d: list[int], c: int, i: int, b: int) -> list[int] réalisant la multiplication en base b du nombre $d \in \mathbb{N}$ par cb^i , où $c \in [0, b[$ et $i \in \mathbb{N}$.
 - (b) En déduire la fonction multiplication (d: list[int], e: list[int], b: int) -> list[int] réalisant la multiplication de deux nombres d et e en base b.

Exercice 3 : Incrément binaire

Écrire une fonction increment(d: list[int]) -> NoneType prenant en entrée la décomposition binaire

$$d = \sum_{k=0}^{n-1} d_k 2^k$$

du nombre d et la transformant en celle de d + 1.

Exercice 4: Espace binaire

On appelle espace binaire d'un entier naturel n toute séquence consécutive de 0 délimités par deux 1 dans la décomposition en base 2 de n. Par exemple, le nombre 529 possède deux espaces binaires de longueurs respectives 3 et 4 car $529 = 1000010001_2$. En revanche, 32 ne possède pas d'espace binaire puisque $32 = 100000_2$.

Écrire une fonction espace_binaire(n: int) -> int qui prend pour argument un entier naturel et renvoie la longueur du plus grand espace binaire présent dans n s'il existe, et la valeur 0 sinon.

Exercice 5: Factorion

On appelle factorion, tout entier naturel qui est égal à la somme des factorielles de ses chiffres. Par exemple, 145 est un factorion en écriture décimale, car

$$1! + 4! + 5! = 1 + 24 + 120 = 145.$$

- 1. Écrire une fonction factorielle (n : int) -> int, calculant la factorielle d'un entier n.
- 2. Écrire une fonction factorion (m: int, b: int) -> bool, déterminant si m est un factorion en base b.
- 3. En déduire une fonction liste_factorions(b: int, p:int) -> list[int], renvoyant l'ensemble des factorions inférieurs ou égaux à p.

5.4. EXERCICES 91

4. (a) Montrer que si $m \in \mathbb{N}$ est un factorion de n chiffres en base b, alors

$$b^{n-1} \leqslant m \leqslant n(b-1)!.$$

En particulier, si

$$u_n := \frac{n(b-1)!}{b^{n-1}} < 1,$$

alors il n'existe aucun factorion de n chiffres.

(b) Montrer que la suite (u_n) est décroissante et tend vers 0, puis écrire une fonction

les_factorions(b: int) -> list[int]

renvoyant l'ensemble des factorions en base b.

Exercice 6: Toblerone

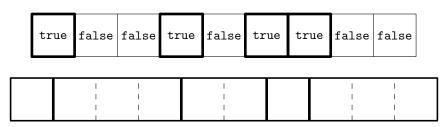
Après un changement de l'équipe dirigeante, l'entreprise Mondelez International, qui fabrique les barres Toblerone, décide de rationaliser sa production pour maximiser ses revenus. En effet, leur chaine de production fabrique des barres de n « carreaux » qui sont ensuite coupées en barres plus petites avant d'être vendues. Mais une récente étude de marché a déterminé le prix auquel on pouvait vendre des barres de longueur k (pour $0 \le k \le n$), et ce prix s'avère ne pas avoir de relation simple avec k. Le problème est donc de décider comment découper la barre initiale de n carreaux en des barres plus petites pour maximiser le prix de vente total.

Dans tout le problème, on considèrera que l'on dispose d'un tableau p, indicé de 0 à n, tel que p[k] est le prix de vente d'une barre de longueur k. Bien entendu, le prix d'un morceau de taille 0 est 0. Remarquez que si p[n] est suffisamment grand, la solution optimale peut très bien être de ne pas découper la barre.

On donne un exemple de tableau p pour n = 10.

k	0	1	2	3	4	5	6	7	8	9	10
p_k	0	1	5	8	9	10	17	17	20	24	26

Pour résoudre ce problème, on commence par établir une correspondance entre les découpes d'un Toblerone composé de n carreaux et les tableaux d de n-1 booléens : on coupe après le carreau d'indice k si et seulement si d_k est vrai.



La découpe 1, 3, 2, 1, 3 et le tableau de booléens correspondant.

1. Écrire une fonction decomposition(d: int, n: int) -> list[bool] prenant en entrée un entier $n \in \mathbb{N}$ ainsi qu'un entier $d \in [0, 2^n]$, et renvoyant une liste de booléens d_k de longueur n telle que

$$d = \sum_{k=0}^{n-1} d_k 2^k$$

où le booléen True représente le bit 1 et le booléen False représente le bit 0.

- 2. Écrire une fonction $prix_decoupe(d: list[bool], p: list[int]) -> int prenant en entrée un tableau <math>d$ de longueur n-1 représentant une découpe d'une barre de longueur n, ainsi qu'un tableau p de longueur n+1 représentant la liste des prix des différentes longueurs et renvoyant le prix de revente de la découpe d.
- 3. En déduire une fonction meilleur_prix(p: list[int]) -> tuple[list[bool], int] renvoyant une meilleure découpe d'une barre de longueur n ainsi que son prix de revente correspondant.
- 4. Donner le prix ainsi qu'une découpe optimale associée pour l'exemple de tableau p donné plus haut.

Nous verrons dans l'année des algorithmes dit de « programmation dynamique » permettant de résoudre ce type de problème plus efficacement.

Représentation mémoire des entiers non signés

Représentation mémoire des entiers signés

Exercice 7 : Complément à 2

Dans une représentation en complément à 2 sur 8 bits, quels sont les entiers relatifs représentés par 01101101 et 10010010?

Exercice 8: Machine 16 bits

On considère une architecture 16 bits. On considère les opérations suivantes entre les entiers signés. Donner leur résultat mathématique (en les considérant comme entiers naturels) puis leur résultat sur 16 bits signés.

- 1. 10×10
- 2. 32767 + 1
- 3. $256 \times (-256)$
- 4. 32767 (-32768)

5.4.2 Les nombres flottants

Représentation mémoire des flottants

Exercice 9: Le type float16

Dans le type float16 utilisé par Numpy, les nombres flottants sont représentés sur 16 bits : 1 bit pour le signe, 5 bits pour l'exposant, 10 bits pour la mantisse.

- 1. Donner la représentation machine dans de type de 1, de -2, puis du plus petit nombre strictement supérieur à 1, ainsi que se valeur.
- 2. Donner les représentations machine et la valeur des plus petits et des plus grands nombres normalisés.
- 3. Déterminer quel nombre est représenté par 0|01110|1001001000.

Problèmes liés à l'arithmétique des nombres flottants

Exercice 10: Hamster jovial

À votre grand bonheur, vous avez reçu pour Noël une balance d'excellente qualité : elle offre trois chiffres décimaux de précision, et ce autant pour des masses de l'ordre du gramme que de l'ordre de la tonne. Vous décidez d'utiliser cette balance pour mesurer la masse m_h de votre hamster h. On suppose pour simplifier que m_h est de l'ordre de 100 grammes (un gros hamster, d'après Wikipedia).

- 1. Si h accepte de monter docilement sur la balance et d'y rester le temps qu'elle fasse sa mesure, avec quelle précision obtiendrez-vous m_h ?
- 2. h, qui est d'une intelligence assez rare pour un rongeur, vous soupçonne, à tort ou à raison, de vouloir utiliser cette pesée pour justifier une mise au régime. Il descend donc immédiatement de la balance à chaque fois que vous l'y posez, et ce avant que la mesure n'ait été faite. Vous décidez alors de le peser indirectement : vous vous pesez une première fois avec h dans la main, puis une deuxième fois sans h, et vous faites la différence. Avec quelle précision obtenez-vous m_h ?

5.4. EXERCICES 93

Exercice 11 : Ordre de sommation

On définit la suite (u_n) par

$$\forall n \in \mathbb{N}^*, \quad u_n := \sum_{k=2}^n \frac{1}{k(k-1)}.$$

1. En remarquant que

$$\forall k \geqslant 2, \quad \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k},$$

calculer explicitement u_n .

2. Afin de calculer u_n à l'aide d'une somme, on écrit :

```
1 def sum_1(n):
2    s = 0.0
3    for k in range(2, n + 1):
4         s = s + 1 / (k * (k - 1))
5    return s

1 def sum_1(n):
2    s = 0.0
3    for k in range(2, n + 1):
4         s = s + 1 / (k * (k - 1))
```

Écrire le programme sum_2 calculant la même somme, mais sommant les 1/(k(k-1)) non pas avec k allant de 2 à n de manière croissante, d mais allant de n à 2 de manière décroissante.

3. Comparer le résultat des deux fonctions précédentes pour $n=10\ 000\ 000$. Quelle est la fonction la plus précise ? Comment expliquez-vous ce phénomène ?

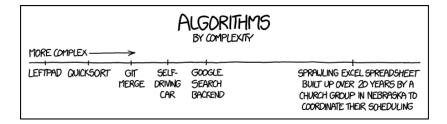
5.4.3 Caractères et chaines de caractères

Codes Ascii et Unicode

Lecture et écriture dans un fichier

Chapitre 6

Complexité



6.1	Con	pplexité
	6.1.1	Notation mathématique
	6.1.2	Type de ressource
	6.1.3	Complexité dans le pire des cas
	6.1.4	Complexité en moyenne
	6.1.5	Complexité temporelle et temps de calcul
6.2	Calc	cul de complexité temporelle
	6.2.1	Algorithme itératif
	6.2.2	Algorithme récursif
6.3	Calc	cul de complexité spatiale
	6.3.1	Algorithme itératif
	6.3.2	Algorithme récursif
6.4	Exe	rcices
	6.4.1	Complexité
	6.4.2	Calcul de complexité temporelle
	6.4.3	Calcul de complexité temporelle et spatiale

6.1 Complexité

6.1.1 Notation mathématique

$\begin{aligned} & \text{D\'efinition 6.1.1} \\ & \text{Soit } (u_n) \text{ et } (v_n) \text{ deux suites r\'eelles positives} \\ & - \text{ On dit que } u_n = \mathrm{O}(v_n) \text{ lorsqu'il existe } B > 0 \text{ et } N \in \mathbb{N} \text{ tels que} \\ & \qquad \qquad \forall n \geqslant N, \quad u_n \leqslant Bv_n. \\ & - \text{ On dit que } u_n = \Omega(v_n) \text{ lorsqu'il existe } A > 0 \text{ et } N \in \mathbb{N} \text{ tels que} \\ & \qquad \qquad \forall n \geqslant N, \quad u_n \geqslant Av_n. \\ & - \text{ On dit que } u_n = \Theta(v_n) \text{ lorsqu'il existe } A, B > 0 \text{ et } N \in \mathbb{N} \text{ tels que} \\ & \qquad \qquad \forall n \geqslant N, \quad Av_n \leqslant u_n \leqslant Bv_n. \end{aligned}$

Remarques

- \Rightarrow On a $u_n = \Theta(v_n)$ si et seulement si $u_n = O(v_n)$ et $u_n = \Omega(v_n)$.
- \Rightarrow La relation Θ est une relation d'équivalence sur l'ensemble des suites positives. En particulier, elle est symétrique.
- \Rightarrow Ces définitions sont asymptotiques : Elles ne dépendent pas des premiers termes de ces suites.
- \Rightarrow Lorsque nous ferons des calculs de complexité, nous travaillerons avec des suites (v_n) strictement positives. Dans ce cas
 - $u_n = O(v_n)$ si et seulement si il existe B > 0 tel que : $\forall n \in \mathbb{N}, u_n \leqslant Bv_n$.
 - $u_n = \Omega(v_n)$ si et seulement si il existe A > 0 tel que : $\forall n \in \mathbb{N}, u_n \geqslant Av_n$.
 - $-u_n = \Theta(v_n)$ si et seulement si il existe A, B > 0 tels que : $\forall n \in \mathbb{N}, Av_n \leq u_n \leq Bv_n$.

Ces caractérisations n'ont plus besoin du « à partir d'un certain rang ».

- \Rightarrow Il faut bien retenir les interprétations intuitives :
 - « $u_n = O(v_n)$ » signifie « u_n est au plus de l'ordre de grandeur de v_n ».
 - « $u_n = \Omega(v_n)$ » signifie « u_n est au moins de l'ordre de grandeur de v_n ».
 - « $u_n = \Theta(v_n)$ » signifie « u_n et v_n sont du même ordre de grandeur ».
- \Rightarrow Si $v_n = \Theta(w_n)$, alors une suite u_n est un O, un Ω ou un Θ de v_n si et seulement si c'est un O, un Ω ou un Θ de w_n . En particulier, puisque quel que soit b > 1, $\log_b n = \Theta(\ln n)$, dire que $u_n = \Theta(\log_2 n)$ est équivalent à dire que $u_n = \Theta(\ln n)$. On écrira simplement $u_n = \Theta(\log n)$.

Proposition 6.1.2

Soit (u_n) une suite positive et (v_n) une suite strictement positive. On suppose que

$$\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} l \in \mathbb{R}_+ \cup \{+\infty\}.$$

Alors

- $u_n = O(v_n)$ si et seulement si $l < +\infty$.
- $u_n = \Omega(v_n)$ si et seulement si l > 0.
- $-u_n = \Theta(v_n)$ si et seulement si $0 < l < +\infty$.

Exercice 1

⇒ Déterminer les relations de comparaison entre les suites de terme général

- $-u_n := |\ln n| \text{ et } v_n := \ln n.$
- $-u_n := 12n^2 + 3n \log n n \text{ et } v_n := n^2.$
- $-u_n \coloneqq 12n^2 \text{ et } v_n \coloneqq n^{17}.$
- $-u_n \coloneqq 12n^2 \text{ et } v_n \coloneqq n^2.$

6.1.2 Type de ressource

Étudier la complexité d'un algorithme, c'est s'intéresser aux ressources qu'il consomme pour effectuer sa tâche, et plus précisément à la manière dont cette consommation évolue lorsque la taille des données augmente. Les principales ressources auxquelles on peut s'intéresser sont :

- le temps de calcul.
- l'espace mémoire.
- l'énergie, qui prend une importance de plus en plus grande à cause de son impact sur
 - l'autonomie, principalement dans les téléphones.
 - le bilan écologique et le cout monétaire des calculs, principalement à l'échelle d'un datacenter.
- les données échangées sur le réseau, qui peuvent être un facteur limitant.

L'étude de la complexité se fait le plus souvent de manière asymptotique, c'est-à-dire en faisant tendre la taille des données vers l'infini.

Définition 6.1.3

On dit que la complexité C(n) d'un algorithme est

- constante lorsque $C(n) = \Theta(1)$.
- logarithmique lorsque $C(n) = \Theta(\log n)$.
- linéaire lorsque $C(n) = \Theta(n)$.
- quasi-linéaire lorsque $C(n) = \Theta(n \log n)$.
- quadratique lorsque $C(n) = \Theta(n^2)$.
- polynomiale lorsqu'il existe $\alpha \in \mathbb{N}$ tel que $C(n) = \Theta(n^{\alpha})$.

6.1. COMPLEXITÉ 97

```
— exponentielle lorsqu'il existe \alpha > 1 tel que C(n) = \Theta(\alpha^n).
— factorielle lorsque C(n) = \Theta(n!).
```

Quand on s'intéresse à la complexité temporelle d'un algorithme, on cherche à évaluer comment son temps d'exécution évolue quand on fait tendre la taille des données n vers l'infini. Comme le temps de calcul dépend de nombreux facteurs difficiles à contrôler comme le langage, l'implémentation ou la machine, on se concentre sur le nombre d'instructions élémentaires exécutées. Il faut donc :

- Déterminer le nombre de fois où chaque instruction est exécutée.
- Déterminer si chacune de ces instructions est *élémentaire* ou non. Pour les instructions qui ne sont pas élémentaires, estimer leur complexité.
- Sommer toutes ces complexités et tenter éventuellement d'en tirer des conclusions sur le temps de calcul.

Ce qui caractérise une opération élémentaire, c'est qu'elle s'exécute en temps constant. Dans l'idéal, il serait bon de ne considérer comme élémentaire que les instructions assembleur exécutées par le processeur. En Python, les opérations suivantes s'effectuent en temps constant :

- Utiliser les opérateurs not, and, et or sur les booléens.
- Ajouter, soustraire, multiplier, diviser, comparer deux entiers ou deux flottants. Le fait que Python travaille avec des entiers de taille variable rend ces opérations non élémentaires, mais on supposera que les entiers que nous manipulons restent de taille raisonnable (disons qu'ils sont représentables sur 64 bits) ce qui a pour conséquence le fait que les opérations arithmétiques sur ces derniers restent élémentaires.
- Calculer la longueur d'une liste ou d'une chaine de caractères avec len(t), accéder à ou modifier l'élément d'indice i d'une liste par t[i], accéder au caractère d'indice i d'une chaine de caractères par s[i].
- Ajouter ou enlever un élément à la fin d'une liste grâce aux méthodes append et pop.
- Enfiler ou défiler un élément sur une file du module collections. Tester si une clé fait partie d'un dictionnaire, obtenir la valeur associée à une clé, créer, mettre à jour ou supprimer une association dans un dictionnaire.
- Affecter une variable.
- Appeler une fonction.

Cependant, les opérations suivantes ne s'effectuent pas en temps constant :

- Si x est un entier, le calcul de x^n par x ** n se fait en $\Theta(\log n)$.
- La concaténation u + v de deux chaines de caractères ou de deux listes u et v s'effectue en $\Theta(|u| + |v|)$.
- La création d'une liste de taille n par [x] * n s'effectue en $\Theta(n)$.
- La méthode u.extend(v) s'effectue en $\Theta(|v|)$.
- Le slicing t[a:b:p] s'effectue en un temps proportionnel à la longueur de la liste créée.

Dans de nombreux exemples, il arrive qu'on vous rappelle quelles sont les opérations élémentaires que l'on doit prendre en compte pour le calcul de la complexité. Par exemple, lors de l'étude de tris, il est courant de ne prendre en compte que le nombre de comparaisons. Dans ce cas, les autres opérations doivent être ignorées. Cependant, comme on détermine les complexités à un Θ près, la spécification exacte des opérations élémentaires à prendre en compte n'a en général aucune influence sur le résultat final.

6.1.3 Complexité dans le pire des cas

On donne toujours la complexité d'un algorithme en fonction de la taille n de l'entrée. Pourtant, la plupart des algorithmes peuvent avoir un temps d'exécution très variable entre deux entrées de même taille. La fonction suivante, qui cherche si un élément x appartient ou non à la liste t de longueur n, s'exécute en temps constant si le premier élément de a vaut x, et en temps proportionnel à n si x n'appartient pas à t.

```
1 def appartient(x, t):
2    """appartient(x: int, t: list[int]) -> bool"""
3    for i in range(len(t)):
4         if t[i] == x:
5             return True
6    return False
```

Par défaut, nous nous intéresserons toujours à la complexité dans le pire des cas : autrement dit, le C(n) cherché est le nombre maximum d'opérations élémentaires pour traiter une entrée de taille n. Dans ce cadre, la fonction précédente a une complexité en $\Theta(n)$.

Définition 6.1.4

Si un algorithme nécessite C(d) opérations élémentaires pour s'exécuter sur une donnée d, on appelle

— complexité dans le pire des cas et on note $C_{\text{max}}(n)$, le nombre maximal d'opérations élémentaires nécessaires pour traiter une donnée de taille n.

$$C_{\max}(n) := \max_{|d|=n} C(d).$$

— complexité dans le meilleur des cas et on note $C_{\min}(n)$, le nombre minimal d'opérations élémentaires nécessaires pour traiter une donnée de taille n.

$$C_{\min}(n) \coloneqq \min_{|d|=n} C(d).$$

Exemple

⇒ Si on compte comme opération élémentaire le nombre de tests ==, la fonction appartient a une complexité dans le pire et dans le meilleur des cas de

$$C_{\text{max}}(n) = n = \Theta(n),$$
 $C_{\text{min}}(n) = 1 = \Theta(1).$

Le pire cas est obtenu lorsque le tableau ne contient pas l'élément x et le meilleur des cas est obtenu lorsque l'élément x est contenu dans la case d'indice 0 du tableau t.

6.1.4 Complexité en moyenne

Certains algorithmes peuvent être très lents dans une petite proportion de cas « pathologiques » et très efficaces sur les autres. Il peut alors être intéressant de calculer la *complexité en moyenne* de l'algorithme, c'est-à-dire l'espérance du temps de calcul pour une certaine loi de probabilité sur les données.

Ce type de complexité est plus délicat à étudier que la complexité dans le pire des cas, et ce pour deux raisons.

- Il n'est pas toujours évident de définir une loi de probabilité sur les données, et encore moins une loi de probabilité pertinente. Dans l'exemple précédent, quelle peut bien être la probabilité que le premier élément soit égal à x?
- Une fois que l'on a fixé la loi de probabilité, les calculs sont en général beaucoup plus délicats que pour le pire cas. Il peut même être nécessaire de faire des mathématiques très difficiles.

Définition 6.1.5

Si un algorithme nécessite C(d) opérations élémentaires pour s'exécuter sur une donnée d, et si \mathbb{P} est une mesure de probabilité sur l'ensemble des données de taille n, on appelle complexité en moyenne et on note $C_{\text{moy}}(n)$ le nombre

$$C_{\text{moy}}(n) := \sum_{|d|=n} \mathbb{P}(d)C(d)$$

Remarques

 \Rightarrow Dans le cas où il existe un nombre fini m de données d_1, \ldots, d_m de taille n, on prend le plus souvent la loi de probabilité uniforme. Dans ce cas

$$C_{\text{moy}}(n) \coloneqq \frac{1}{m} \sum_{k=1}^{m} C(d_k).$$

⇒ On a bien évidemment

$$C_{\text{mov}}(n) = \mathcal{O}(C_{\text{max}}(n))$$
 et $C_{\text{mov}}(n) = \Omega(C_{\text{min}}(n))$.

- \Rightarrow L'exemple le plus connu, et sans doute le plus important, d'algorithme pour lequel il est pertinent de faire une analyse en moyenne est celui du *tri rapide*. En effet, il est en $\Theta\left(n^2\right)$ dans le pire des cas mais en $\Theta(n\log n)$ en moyenne si le tableau d'entrée est dans un ordre aléatoire. De plus, étant donné qu'il se fait en place, il est souvent plus efficace que le tri fusion qui est pourtant en $\Theta(n\log n)$ dans le pire cas.
- $\, \Longrightarrow \,$ Voici les complexités des différents algorithmes de tri que nous avons vu :

Méthode	$C_{\min}(n)$	$C_{\text{moy}}(n)$	$C_{\max}(n)$
Tri sélection	$\Theta\left(n^2\right)$	$\Theta\left(n^2\right)$	$\Theta\left(n^2\right)$
Tri insertion	$\Theta\left(n\right)$	$\Theta(n^2)$	$\Theta\left(n^2\right)$
Tri fusion	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta\left(n\log n\right)$
Tri rapide	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta\left(n^2\right)$

6.1.5 Complexité temporelle et temps de calcul

Après avoir analysé la complexité temporelle d'un algorithme, on dispose d'une information du type $T(n) = \Theta(n \log n)$. En théorie, cela ne nous dit absolument rien du temps de calcul réel pour une valeur donnée de n, mais en pratique on peut en tirer quelques informations.

Valeur de la constante cachée : Pour un algorithme raisonnablement simple, on peut supposer que la constante multiplicative cachée dans le Θ est de l'ordre de 10, voire de 100. Pour certains algorithmes très sophistiqués, elle peut cependant être très grande et rendre l'algorithme beaucoup moins efficace qu'on ne le pense, voire inutilisable en pratique.

Traduction d'une opération élémentaire : Certaines des opérations élémentaires vues plus haut (ajouter deux flottants, par exemple) correspondent directement à une instruction processeur. D'autres sont plus complexes et correspondront à plusieurs instructions (une bonne centaine pour faire un append en Python).

 $Cycle\ processeur$: Vu de l'extérieur, l'état d'un processeur évolue de manière discrète. Il est dans un certain état à l'instant t_n , dans un certain état à l'instant $t_{n+1} = t_n + h$ et dans un état non défini entre ces deux instants. Ce h est la durée d'un cycle, c'est-à-dire l'inverse de la $fréquence\ d'horloge$ que les constructeurs communiquent. Comme vous le savez peut-être, la fréquence d'un processeur actuel varie entre 1 GHz et 5 GHz, et un cycle prend donc de 0.2ns à 1ns.

Temps pour exécuter une instruction : Exécuter une instruction prend au moins un cycle (un processeur peut cependant exécuter plusieurs instructions en parallèle sur un même cœur), mais peut prendre beaucoup plus longtemps. Quelques exemples :

- Ajouter deux entiers, comparer deux flottants : 1 cycle.
- Une division entière : Une vingtaine de cycles.
- Le calcul du cosinus d'un nombre flottant : Une centaine de cycles.
- Accès mémoire : entre 1 et 1000 cycles.

Une recette de cuisine : En étant optimiste

- La constante cachée vaut 2 (très optimiste).
- Chaque opération élémentaire donne 5 instructions (optimiste).
- On a un IPC (nombre d'instructions exécutées par cycle d'horloge) de 2 (très raisonnable).
- Un cycle prend 0.2ns (optimiste).

On arrive alors à un temps de calcul de f(n) nanosecondes si la complexité est en $\Theta(f(n))$. C'est possible si par exemple on programme bien une multiplication matricielle en assembleur, voire en C. Si au contraire on travaille dans un langage « lent » comme Python et si l'algorithme se prête moins à un traitement efficace en machine, on peut facilement être mille fois plus lent. On pourra donc retenir la recette suivante : Si la complexité temporelle est en $\Theta(f(n))$, pour des valeurs de n « pas trop petites », le temps de calcul sera le plus souvent compris entre f(n) nanosecondes et f(n) microsecondes.

	10	100	1 000	10 000	1 000 000	10^{9}
$\Theta(\log n)$	1ns	10ns	10ns	10ns	10ns	100ns
$\Theta(\sqrt{n})$	1ns	$10 \mathrm{ns}$	$100 \mathrm{ns}$	$100 \mathrm{ns}$	1mics	$1 \mathrm{ms}$
$\Theta(n)$	10ns	100ns	1mics	10mics	1ms	1s
$\Theta(n \log n)$	10ns	100ns	10mics	100mics	$10 \mathrm{ms}$	10s
$\Theta(n^2)$	100ns	10mics	1ms	100ms	10 min	10 ans
$\Theta(n^3)$	1mics	$1 \mathrm{ms}$	1s	10 min	10 ans	∞
$\Theta(2^n)$	1mics	∞	∞	∞	∞	∞

Ordre de grandeur du temps de calcul pour quelques valeurs de n et complexités usuelles.

On est ici très optimiste : il faut par exemple comprendre que pour une complexité en $\Theta(n \log n)$ avec $n = 10^6$, on prendra au mieux quelques dizaines de millisecondes. Pour une version pessimiste, il faut essentiellement tout multiplier par mille.

6.2 Calcul de complexité temporelle

Dans cette partie, on suppose que l'on connait la complexité de toutes les fonctions prédéfinies qu'on utilise (on sait donc que len est en $\Theta(1)$ par exemple), et que l'on souhaite calculer la complexité temporelle dans le pire cas

d'une fonction. Autrement dit, on cherche une estimation asymptotique du nombre C(n) d'opérations effectuées dans le pire cas, idéalement sous la forme d'un Θ , ou d'un « bon » O. Si nous parlons d'un bon « O », c'est que si vous prouvez rigoureusement que la complexité du tri par insertion est en O(n!), vous n'avez certes pas commis d'erreur, mais vous n'avez pas non plus obtenu de points.

6.2.1 Algorithme itératif

Boucles for

Pour une boucle for, il faut simplement sommer le nombre d'opérations pour chacune des itérations.

Commençons par l'exemple du tri par sélection, dont le code nous est rappelé ci-dessous :

```
def swap(t, i, j):
      """swap(t: list[int], i: int, j: int) -> NoneType"""
      t[i], t[j] = t[j], t[i]
  def indice_minimum(t, i):
      """indice_minimum(t: list[int], i: int) -> int"""
      j_min = i
      for j in range(i + 1, len(t)):
          if t[j] < t[j_min]:</pre>
              j_{\min} = j
      return j_min
13 def tri_selection(t):
      """tri_selection(t: list[int]) -> NoneType"""
14
      for i in range(len(t) - 1):
15
           j = indice_minimum(t, i)
16
          swap(t, i, j)
```

La fonction swap s'effectue en $\Theta(1)$ car elle n'effectue que deux accès mémoire et deux affectations. Si on note n la longueur du tableau, la fonction indice_minimum effectue quant à elle n-1-i passages dans la boucle. Comme les opérations à l'intérieur de la boucle sont élémentaires, sa complexité est donc en $\Theta(n-1-i)$. La complexité de la fonction tri_selection est donc en

$$C(n) = \sum_{i=0}^{n-2} \left[\Theta(n-1-i) + \Theta(1) \right] = \sum_{i=0}^{n-2} \Theta(n-1-i) = \Theta\left(\sum_{i=0}^{n-2} (n-1-i) \right)$$
$$= \Theta((n-1) + \dots + 2 + 1) = \Theta\left(\frac{n(n-1)}{2} \right)$$
$$= \Theta(n^2).$$

L'algorithme de tri sélection est donc un algorithme de complexité quadratique. Remarquons que nous aurions trouvé le même résultat si nous avions seulement compté le nombre de comparaisons.

Attention à bien voir la différence entre des boucles successives qui donnent une complexité en $\Theta(n)$ si les corps de boucle sont des instructions élémentaires

et des boucles imbriquées qui donnent une complexité en $\Theta(n^2)$ dans la même situation.

Prenons désormais un exemple un peu plus général. On suppose maintenant que f est une fonction de signature $f(t: list[int], i: int) \rightarrow int$, et on considère la fonction :

La ligne 3 n'est exécutée qu'une seule fois, et prend un temps unitaire. Les lignes 5 et 6, le corps de la boucle, sont exécutées n fois chacune. La ligne 6 est une opération élémentaire, mais la ligne 5 contient un appel à une fonction inconnue f avec le paramètre i. Le nombre total d'instructions exécutées dans cette boucle est donc

$$C(n) = \sum_{i=0}^{n-1} [1 + T(i)].$$

où T(i) correspond au nombre d'instructions pour le calcul de f(t, i).

— Si f s'exécute en temps constant, par exemple si

```
1 def f(t, i):
2    """f(t: list[int], i: int) -> int"""
3    return t[i]
```

alors chaque itération est en $\Theta(1)$ et on obtient au total

$$C(n) = \sum_{i=0}^{n-1} [1 + \Theta(1)] = \sum_{i=0}^{n-1} \Theta(1) = \Theta(n).$$

— Le temps d'exécution de f(t, i) pourrait aussi dépendre de n, tout en restant indépendant de i. Par exemple

Dans ce cas, chacun des termes de la somme est un $\Theta(n)$, et l'on obtient donc

$$C(n) = \sum_{i=0}^{n-1} [1 + \Theta(n)] = \sum_{i=0}^{n-1} \Theta(n) = \Theta\left(\sum_{i=0}^{n-1} n\right) = \Theta\left(n^2\right).$$

— Considérons maintenant la fonction f suivante, qui s'exécute en temps $\Theta(i)$.

— Le calcul de la complexité totale ne pose pas de problème

$$C(n) = \sum_{i=0}^{n-1} [1 + \Theta(i)] = \sum_{i=0}^{n-1} \Theta(i) = \Theta\left(\sum_{i=0}^{n-1} i\right) = \Theta\left(\frac{n(n-1)}{2}\right) = \Theta(n^2).$$

— Comme on a toujours i < n, la fonction f s'exécute en temps O(n). Si l'on souhaite seulement une majoration de la complexité totale, on peut donc écrire

$$C(n) = \sum_{i=0}^{n-1} [1 + O(n)] = \sum_{i=0}^{n-1} O(n) = O\left(\sum_{i=0}^{n-1} n\right) = O(n^2).$$

Au point précédent, on avait obtenu une estimation plus précise : notre « grand-O » est en fait un Θ . Ce ne sera pas toujours le cas. Par exemple, si la fonction f s'exécute en temps $\Theta(2^i)$, alors une majoration brutale donnerait

$$C(n) = \sum_{i=0}^{n-1} \left[1 + \Theta\left(2^{i}\right) \right] = \sum_{i=0}^{n-1} \Theta\left(2^{i}\right) = \sum_{i=0}^{n-1} O\left(2^{n}\right) = O\left(\sum_{i=0}^{n-1} 2^{n}\right) = O(n2^{n}).$$

C'est correct, car c'est bien une majoration, mais elle est grossière. En réalité, on a

$$C(n) = \sum_{i=0}^{n-1} \Theta\left(2^{i}\right) = \Theta\left(\sum_{i=0}^{n-1} 2^{i}\right) = \Theta(2^{n} - 1) = \Theta(2^{n}).$$

Dans les exemples précédents, nous avons à plusieurs reprises dû trouver un ordre de grandeur de la somme $\sum_{k=0}^{n-1} k$. Comme nous sommes amenés à manipuler des sommes de ce type, on pourra utiliser directement les résultats suivants :

Proposition 6.2.1

Soit $\alpha, \beta \geqslant 0$ et $\gamma > 1$. Alors

$$\sum_{k=0}^{n} k^{\alpha} = \Theta(n^{\alpha+1}), \qquad \sum_{k=1}^{n} k^{\alpha} \log^{\beta} k = \Theta(n^{\alpha+1} \ln^{\beta} n) \qquad \text{et} \qquad \sum_{k=0}^{n} \gamma^{k} = \Theta(\gamma^{n}).$$

Boucle while

La différence avec une boucle for est qu'on ne connait pas à priori le nombre d'itérations. Le plus souvent, on sera amené à le majorer, mais il faudra faire attention à ne pas être trop grossier.

Revenons à l'exemple de la recherche d'un élément d'une liste triée par dichotomie, dont nous avons donné le code dans le chapitre sur les listes.

On note g_k et d_k les valeurs respectives de g et d lors du passage d'indice k dans la boucle. On a $g_0 := 0$ et $d_0 := n$ et, dans les deux cas où x n'est pas trouvé à l'itération k, on montre que

$$d_{k+1} - g_{k+1} \leqslant \frac{d_k - g_k}{2}$$

Autrement dit, la largeur $l_k := d_k - g_k$ de la tranche de recherche est au moins divisée par 2 à chaque itération. On en déduit que

$$l_k \leqslant \frac{n}{2^k}$$
.

Dès que $l_k \leq 1$, on sort de la boucle au plus tard à l'itération suivante. Or

$$\frac{n}{2^k} \leqslant 1 \quad \Longleftrightarrow \quad 2^k \geqslant n \quad \Longleftrightarrow \quad \log_2(2^k) \geqslant \log_2 n \quad \Longleftrightarrow \quad k \geqslant \log_2 n \quad \Longleftrightarrow \quad k \geqslant \lceil \log_2 n \rceil.$$

Cet algorithme effectue donc au plus $1 + \lceil \log_2 n \rceil$ itérations. La complexité dans le pire des cas de la recherche dichotomique est donc en $O(\log n)$. Comme ces itérations sont toutes effectuées si la liste ne contient pas l'élément recherché, on se convaincra que cette complexité est en fait en $O(\log n)$. D'autre part, la complexité dans le meilleur des cas est en O(1), ce cas étant atteint lorsque l'élément x est exactement au milieu de notre liste.

Remarque

 \Rightarrow Attention, il ne faut pas oublier de prendre en compte le temps nécessaire à évaluer la condition de la boucle. Pour prendre un exemple un peu idiot, la fonction suivante s'exécute en temps $\Theta(|u|^2)$.

```
1 def somme(t):
      """somme(t: list[int]) -> int"""
      s = 0
      for x in t:
          s = s + x
      return s
  def f(u, borne):
      """f(u: list[int], borne: int) -> int"""
10
      while i < len(u) and somme(u[:i]) < borne: # Evaluation en O(i) !!!
11
          i += 1
                                                   # Corps de la boucle en O(1)
12
      return i
13
```

6.2.2 Algorithme récursif

Pour la complexité temporelle, les algorithmes récursifs font naturellement apparaitre une formule de récurrence. Diverses techniques que nous allons voir nous permettent d'en déduire le comportement asymptotique.

Dans les cas les plus simples, on commencera par établir une forme close pour C(n). Prenons l'exemple de la fonction suivante qui calcule la factorielle d'un entier positif :

```
1 def factorielle(n):
2     """factorielle(n: int) -> int"""
3     if n == 0:
4         return 1
5     else:
6         return n * factorielle(n - 1)
```

On souhaite estimer la complexité de cette fonction en calculant le nombre C(n) de multiplications effectuées. La lecture du code nous donne

$$C(0) = 0$$
, et $\forall n \in \mathbb{N}^*$, $C(n) = C(n-1) + 1$.

On en déduit que C(n) = n et donc que $C(n) = \Theta(n)$.

Mais rapidement, on se rend compte que les formes closes pour C(n) deviennent complexes. Considérons par exemple l'algorithme d'exponentiation rapide dans sa version récursive :

```
1 def expo_rapide(x, n):
2     """expo_rapide(x: int, n: int) -> int"""
3     if n == 0:
4         return 1
5     else:
6         p = n // 2
7         y = expo_rapide(x, p)
8         if n % 2 == 0:
9             return y * y
10         else:
11         return x * y * y
```

Si on note C(n) le nombre de multiplications effectuées pour le calcul de x^n , on a

$$C(0) = 0, \quad \text{et} \quad \forall n \in \mathbb{N}^*, \quad C(n) = \begin{cases} C(\lfloor n/2 \rfloor) + 1 & \text{Si } n \text{ est pair,} \\ C(\lfloor n/2 \rfloor) + 2 & \text{Si } n \text{ est impair.} \end{cases}$$

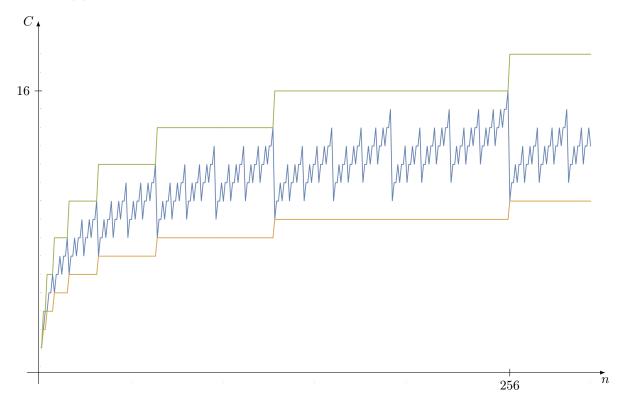
Cette récurrence devient plus facile à appréhender si l'on décompose n en base 2. Si $n=d_{w-1}\dots d_1d_{0_2}$, on a

$$C(\underline{d_{w-1}\dots d_1d_0}_2) = \begin{cases} C(\underline{d_{w-1}\dots d_1}_2) + 1 & \text{Si } d_0 = 0, \\ C(\underline{d_{w-1}\dots d_1}_2) + 2 & \text{Si } d_0 = 1. \end{cases}$$

En notant z(n) le nombre de 0 dans la décomposition de n en base 2 et u(n) le nombre de 1 dans cette même décomposition, on en déduit que C(n) = z(n) + 2u(n). Autrement dit, si on définit b(n) := z(n) + u(n) comme le nombre de chiffres dans la décomposition en base 2 de n, on a C(n) = b(n) + u(n). Puisque $b(n) = 1 + \lfloor \log_2 n \rfloor$ et $1 \le u(n) \le b(n)$, on en déduit que

$$2 + |\log_2 n| \le C(n) \le 2 + 2|\log_2 n|,$$

ce qui nous permet de conclure que $C(n) = \Theta(\log n)$. Le graphe ci-dessous représente au centre, en bleu, la courbe d'évolution de C(n), encadrée par les deux fonctions obtenues dans l'inégalité précédente.



Le fait qu'un programme aussi simple ait une complexité au comportement aussi erratique nous permet de réaliser qu'il est illusoire d'obtenir des formes closes de C(n) pour la plupart des programmes que nous rencontrerons. C'est pourquoi, on se contentera d'une estimation asymptotique. Malheureusement, l'obtention rigoureuse de ces estimations est extrêment technique; on se permettra donc de sacrifier une trop grande rigueur mathématique. Les deux techniques suivantes nous seront très utiles.

— Technique de la sommation télescopique : Elle consiste à « résoudre » la relation de récurrence en se permettant quelques approximations. Dans notre cas, on confondra $\lfloor n/2 \rfloor$ et n/2 et on écrira $C(n) = C(n/2) + \Theta(1)$, puis

$$\begin{array}{rcl} C(n) - C(n/2) & = & \Theta(1) \\ C(n/2) - C(n/4) & = & \Theta(1) \\ & \vdots & = & \vdots \\ C(n/2^{k-1}) - C(n/2^k) & = & \Theta(1) \end{array}$$

où k est tel que $n/2^k \approx 1$, c'est-à-dire $k \approx \log_2 n$. En sommant ces égalités, on obtient $C(n) - C(1) = \Theta(1) \log_2 n$, donc $C(n) = \Theta(\log n)$.

— *Technique de l'arbre d'appels* : Cette technique commence par faire une esquisse de l'arbre d'appels de notre fonction récursive :

Puisque $n/2^k \approx 1$, on en déduit que $k \approx \log_2 n$. La profondeur de notre arbre d'appels est donc de l'ordre de $\log_2 n$. Pour chaque appel, on calcule ensuite sa contribution propre à la complexité totale. Autrement dit, on estime les opérations élémentaires effectuées par cet appel en ignorant celles effectuées par ses enfants. Dans notre cas, chaque appel a une complexité propre en $\Theta(1)$. On somme ensuite ces données sur l'ensemble des noeuds de l'arbre. Dans notre cas, on obtient une complexité totale en $C(n) = \Theta(1) \log_2 n = \Theta(\log n)$.

Ces deux techniques sont sur le fond assez semblables, mais la technique de l'arbre d'appels montrera rapidement sa supériorité lorsque les arbres seront plus complexes, comme nous allons le voir dans l'exemple suivant.

Nous allons revenir sur l'algorithme de tri fusion dont nous rappelons le code ici. On commence par remarquer que la fonction fusion(t1, t2) a une complexité en $\Theta(|t_1|+|t_2|)$. En effet, chaque passage dans la boucle while ajoute un élément parmi les listes t_1 et t_2 à notre liste t. Les appels à extend ajoutent les éléments restants une fois qu'une des deux listes est épuisée.

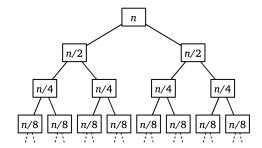
```
def fusion(t1, t2):
       """fusion(t1: list[int], t2: list[int]) -> list[int]"""
      t = []
      i1 = 0
      i2 = 0
      while i1 < len(t1) and i2 < len(t2):
           if t1[i1] < t2[i2]:</pre>
               t.append(t1[i1])
               i1 = i1 + 1
           else:
10
               t.append(t2[i2])
11
               i2 = i2 + 1
12
      t.extend(t1[i1:])
13
      t.extend(t2[i2:])
14
      return t
15
```

```
1 def tri_fusion(t):
2     """tri_fusion(t: list[int]) -> list[int]"""
3     n = len(t)
4     if n <= 1:
5         return t[:]
6     n1 = n // 2
7     t1 = tri_fusion(t[0:n1])
8     t2 = tri_fusion(t[n1:n])
9     t = fusion(t1, t2)
10     return t</pre>
```

Si on note C(n) la complexité de la fonction tri_fusion , on a donc

$$C(n) = C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + \Theta(n).$$

Pour obtenir une estimation asymptotique de C(n), nous allons utiliser la technique de l'arbre d'appels. La racine représente l'appel initial à tri_fusion avec une liste de taille n, qui appelle récursivement notre fonction avec des listes de taille n/2, qui elles-mêmes appellent récursivement notre fonction avec des listes de taille n/4, etc.



On tombe sur un cas de base lorsque la taille des listes est inférieure ou égale à 1. La hauteur h de cet arbre vérifie donc $n/2^h \approx 1$, ce qui nous donne $h \approx \log_2 n$. Pour estimer la complexité de l'appel initial, il suffit désormais de prendre en compte le cout propre de chaque appel, c'est-à-dire le cout de la fusion. Pour simplifier le calcul, on va sommer ligne par ligne.

- Sur la première ligne, on compte une fusion pour une liste de taille n; ce cout est de $\Theta(n)$.
- Sur la seconde ligne, on compte 2 fusions pour des listes de taille n/2; ce cout est de $2\Theta(n/2) = \Theta(n)$.
- Sur la troisième ligne, on compte 4 fusions pour des listes de taille n/4; ce cout est de $4\Theta(n/4) = \Theta(n)$.

On constate que sur chaque ligne, le cout est de $\Theta(n)$. Comme l'arbre est de hauteur $\log_2 n$, on en déduit que la complexité du tri fusion est de $C(n) = \Theta(n) \log_2 n = \Theta(n \log n)$.

6.3 Calcul de complexité spatiale

6.3.1 Algorithme itératif

La complexité en espace mesure la quantité de mémoire de travail utilisée par l'algorithme. On ne compte pas la taille des données.

La fonction suivante calcule le n-ième nombre de Fibonacci pour $n \geqslant 1$:

```
1 def fibo(n):
2    """fibo(n: int) -> int"""
3    t = [None] * (n + 1)
4    t[0] = 0
5    t[1] = 1
6    for i in range(2, n + 1):
7     t[i] = t[i - 1] + t[i - 2]
8    return t[n]
```

Elle a une complexité en espace en $\Theta(n)$ puisqu'elle alloue un tableau de taille n+1 pour réaliser ses calculs. Sa complexité en temps est également linéaire.

La fonction suivante effectue le même calcul :

Elle a également une complexité temporelle linéaire, mais sa complexité spatiale est constante, puisqu'elle utilise uniquement deux variables entières.

De nombreux algorithmes « échangent de l'espace contre du temps » : pour obtenir une meilleure complexité temporelle, on accepte une moins bonne complexité spatiale. C'est par exemple le cas de tous les algorithmes de programmation dynamique, que nous étudierons ultérieurement. C'est souvent efficace en pratique, mais il y a un certain

nombre de seuils qu'il est couteux de dépasser : les données ne rentrent plus dans le cache, les données ne rentrent plus en mémoire vive, les données ne rentrent plus dans le stockage de masse local, etc.

Taille des données et capacité des mémoires : Il faut avoir en tête quelques ordres de grandeur :

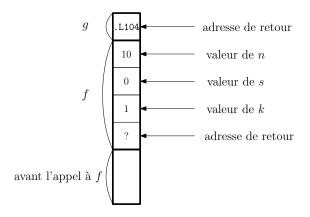
- Un entier ou un flottant prennent en général 8 octets en mémoire.
- Un ordinateur typique a quelques gigaoctets de mémoire vive.
- Ce même ordinateur peut disposer de quelques téraoctets de mémoire de stockage, mais si l'on doit utiliser cette mémoire pour les calculs, les performances peuvent facilement être divisées par mille, voire un million.

6.3.2 Algorithme récursif

Pile d'appels

Considérons les deux fonctions suivantes

Voici l'état de la pile d'appels lors du premier passage ligne 9 dans le calcul de f(10).



Que se passe-t-il « en vrai » quand on calcule f(2)? f crée des variables locales, leur donne une valeur, puis appelle g avec l'argument 1. Pour cela, elle cède le contrôle d'exécution à g et l'exécution « saute » au début du code de g. Quand g aura fini son calcul, il faudra qu'elle rende la main à f: mais l'exécution de f doit reprendre là où elle s'est arrêtée, et dans l'environnement qui était valable à ce moment : \mathbf{s} doit valoir 0, \mathbf{k} doit valoir 1, etc. Il faut donc que f sauvegarde un certain nombre d'informations avant d'appeler g.

Cette sauvegarde d'informations se fait sur la *pile d'appels*. Vu de loin, un élément (on parle de *stackframe* ou *bloc d'activation*) de la pile contient toutes les informations relatives à un appel donné d'une fonction donnée :

- Les arguments de la fonction
- Les variables locales de la fonction.
- Le point auquel l'exécution du programme devra reprendre quand l'appel sera terminé.

Quand une fonction est appelée, elle crée une *stackframe* au sommet de la pile, qu'elle supprimera juste avant de renvoyer son résultat et de passer le contrôle au point qui était sauvegardé. À tout moment de l'exécution du programme, la hauteur de la pile (en nombre de *frames*) est donc égale au nombre de fonctions actives, c'est-à-dire ayant été appelées et n'ayant pas encore retourné leur résultat.

Une remarque sur la terminologie : le nom de « pile » n'est bien sûr pas anodin, il y a bien une très forte analogie avec la structure de données que nous avons vue. On empile au moment des appels, on dépile au moment des retours.

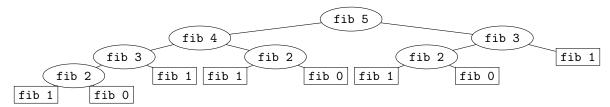
Pile et fonction récursive

Pour l'instant, on a considéré le cas d'une fonction f qui appelle une fonction g. Mais rien n'empêche bien sûr f de s'appeler elle-même : ce sera le cas si f est récursive. Dans ce cas, il y aura un bloc d'activation par appel actif de f. C'est logique, puisque chacun de ses appels possède ses propres variables locales, et son propre compteur de programme étant donné que chacun des appels en est à un point différent de son exécution.

Pour visualiser ce type de situation, il est plus intéressant de réfléchir en termes d'arbres d'appels. Considérons une fonction calculant les termes de la suite de Fibonacci de manière récursive et naïve. Ici, « naïve » est à comprendre au sens de scandaleusement mauvais et contraire aux bonnes mœurs.

```
1 def fib(n):
2    """fib(n: int) -> int"""
3    if n <= 1:
4        return n
5    else:
6        return fib(n - 1) + fib(n - 2)</pre>
```

Un appel à fib(5) produit un appel à fib(4) et un à fib(3), qui produisent eux-mêmes d'autres appels, etc. La situation est très bien résumée par l'arbre d'appels suivant pour fib(5).



Voici l'évolution de la pile d'appels lors du calcul de fib(5).

```
fib(5)
                                                                           fib(1)
    fib(5) | fib(4)
    fib(5) | fib(4) | fib(3)
    fib(5) | fib(4) | fib(3) | fib(2)
                                                                  fib(3)
    fib(5) | fib(4) | fib(3) | fib(2) | fib(1)
                                                                                   fib(0)
    fib(5) | fib(4) | fib(3) | fib(2)
    fib(5) | fib(4) | fib(3) | fib(2) | fib(0)
    fib(5) | fib(4) | fib(3) | fib(2)
                                                                          fib(2)
    fib(5) | fib(4) | fib(3)
    fib(5) | fib(4) | fib(3) | fib(1)
                                                                                   fib(1)
    fib(5) | fib(4) | fib(3)
                                                         fib(5)
    fib(5) | fib(4)
                                                                                   fib(0)
    fib(5) | fib(4) | fib(2)
    fib(5) | fib(4) | fib(2) | fib(1)
--> fib(5) | fib(4) | fib(2)
                                                                           fib(2)
    fib(5) | fib(4) | fib(2) | fib(0)
    fib(5) | fib(4) | fib(2)
                                                                                   fib(1)
   fib(5) | fib(4)
                                                                  fib(4)
    fib(5)
    fib(5) | fib(3)
                                                                                   fib(1)
    fib(5) | fib(3) | fib(2)
    fib(5) | fib(3) | fib(2) | fib(1)
                                                                           fib(3)
                                                                                           fib(0)
    fib(5) | fib(3) | fib(2)
    fib(5) | fib(3) | fib(2) | fib(0)
                                                                                   fib(2)
    fib(5) | fib(3) | fib(2)
    fib(5) | fib(3)
                                                                                            fib(1)
    fib(5) | fib(3) | fib(1)
    fib(5) | fib(3)
    fib(5)
```

Il faut avoir de cet arbre une vision dynamique : on en effectue un parcours en profondeur. Quand on est en train de visiter un nœud, les appels actifs sont ceux correspondant au nœud actuel ainsi qu'à tous ses ancêtres, c'est-à-dire

tous les nœuds situés sur le chemin qui le relie à la racine. La hauteur maximale de la pile est égale à la hauteur de l'arbre. Ici, cette hauteur est de l'ordre de n alors que le temps d'exécution est exponentiel.

Exercice 2

⇒ Montrer que la complexité temporelle de la fonction fib est en

$$\Theta(\varphi^n)$$

```
où \varphi := (1 + \sqrt{5})/2 est le nombre d'or.
```

Cependant, si l'on s'intéresse à une fonction ayant une structure d'appels plus simple, les choses peuvent être différentes.

```
1 def somme(n):
2    """somme(n: int) -> int"""
3    if n == 0:
4        return 0
5    else:
6        return n + somme(n - 1)
```

Ici, l'arbre d'appels obtenu est en fait linéaire. Voici par exemple l'arbre d'appels pour somme (6) :

Le problème, qui n'est pas forcément évident quand on regarde le code, est qu'un appel à somme(n) demande un espace mémoire proportionnel à n: c'est la hauteur maximale de la pile d'appels. De plus, l'espace disponible sur la pile est bien plus limité que l'espace mémoire total. Le résultat:

```
In [1]: somme(3000)
RecursionError: maximum recursion depth exceeded in comparison
```

Notons que le temps de calcul n'est pas le problème : le stackoverflow se produit presque instantanément.

Proposition 6.3.1

La complexité en espace d'une fonction récursive est au moins égale à sa profondeur maximale de récursion, c'est-à-dire à la profondeur de son arbre d'appels.

Remarques

- ⇒ Elle peut bien sûr être supérieure à cette profondeur, typiquement si la fonction crée des listes auxiliaires.
- ⇒ Par défaut, l'espace disponible sur la pile est assez faible, de l'ordre de quelques mégaoctets. On peut donc faire un *stackoverflow* bien avant d'épuiser la mémoire disponible.

Ici, cette complexité linéaire en espace est problématique : une fonction itérative aura clairement une utilisation mémoire constante, sauf si l'on s'amuse à stocker tous les résultats intermédiaires.

```
1 def somme(n):
2    """somme(n: int) -> int"""
3    s = 0
4    for k in range(1, n + 1):
5         s += k
6    return s
```

Et le problème disparait :

```
1 In [2]: somme(3000)
2 Out[2]: 4501500
```

6.4 Exercices

6.4.1 Complexité

 $Notation\ math\'ematique$

Type de ressource

Complexité dans le pire des cas

Complexité en moyenne

Complexité temporelle et temps de calcul

6.4.2 Calcul de complexité temporelle

Algorithme itératif

Exercice 1: Doublons dans un tableau

On désire obtenir un algorithme qui détermine si un tableau présente des doublons en son sein.

- 1. Rédiger un algorithme naïf qui résout le problème. Quelle est sa complexité?
- 2. Rédiger maintenant un second algorithme en supposant cette fois le tableau trié. Quelle est sa complexité? Sachant qu'il existe des algorithmes de tri de complexité $\Theta(n \log n)$, a-t-on intérêt à trier le tableau pour résoudre ce problème?

Exercice 2 : Équilibre d'un tableau

On se donne un tableau t de n entiers relatifs et on cherche la valeur minimale de

$$\Delta_k := (t_0 + \dots + t_{k-1}) - (t_k + \dots + t_{n-1}) = \sum_{i=0}^{k-1} t_i - \sum_{i=k}^{n-1} t_i$$

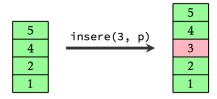
lorsqu'on fait varier k dans [0, n].

- 1. Rédiger une fonction delta(t: list[int], k: int) -> int qui calcule la quantité Δ_k et en déduire une fonction equilibre(t: list[int]) -> int qui résout le problème posé. Évaluer la complexité temporelle de cette dernière fonction.
- 2. Écrire une fonction equilibre_lineaire(t: list[int]) -> int qui résout ce problème en temps linéaire.

Exercice 3: Tri d'une pile

On rappelle qu'une pile en Python est une liste p pour laquelle seules les opérations élémentaires suivantes sont autorisées :

- Créer une pile vide : p = []
- Tester si la pile est vide : len(p) == 0
- Ajouter l'élément x au sommet de la pile : p.append(x)
- Obtenir l'élement au sommet d'une pile non vide : p[-1]
- Enlever l'élément au sommet d'une pile non vide : p.pop()
- 1. À l'aide d'une pile auxiliaire, rédiger une fonction insere(x: int, p: list[int]) -> NoneType qui prend pour argument un entier x et une pile p formée d'entiers triés par ordre croissant et qui insère x au sein de p en préservant l'ordre relatif des éléments.



- 2. En déduire une fonction tri(p: list[int]) -> NoneType qui prend pour argument une pile d'entiers et qui renvoie une nouvelle pile contenant les mêmes éléments triés par ordre croissant.
- 3. Quelle est la complexité temporelle de cette fonction?

6.4. EXERCICES 111

Exercice 4: Cherche un entier comme somme de deux entiers

- 1. Écrire une fonction cherche_somme(t: list[int], s: int) -> tuple[int, int] ayant la spécification suivante :
 - Si la fonction renvoie (i, j), alors on a $0 \le i < j < |t|$ et $t_i + t_j = s$.
 - Si la fonction renvoie None, alors il n'existe pas de couple (i, j) vérifiant $0 \le i < j < |t|$ et $t_i + t_j = s$. Quelle est sa complexité?

```
1 In [1]: cherche_somme([15, 1, 3, 5, 6, 7, 10, 1, 8], 11)
2 Out[1]: (6, 7)
3
4 In [2]: cherche_somme([15, 1, 3, 5, 6, 7, 10, 1, 8], 19)
5 Out[2]: None
```

2. On suppose maintenant que le tableau t est trié par ordre croissant. Écrire une fonction

```
cherche_somme_croissant(t: list[int], s: int) -> tuple[int, int]
```

ayant la même spécification que cherche_somme mais de complexité linéaire en la taille du tableau.

```
In [4]: cherche_somme_croissant([1, 1, 3, 5, 6, 7, 7, 10, 12, 15], 13)

2 Out[4]: (0, 8)

4 In [5]: cherche_somme_croissant([1, 1, 3, 5, 6, 7, 7, 10, 12, 15], 17)

5 Out[5]: (3, 8)
```

3. Déterminer un algorithme permettant d'implémenter cherche_somme avec une complexité quasi-linéaire.

Exercice 5: Maximum local

On considère un tableau $t=(t_0,\ldots,t_{n-1})$ d'entiers. On dit que t présente un maximum local en $i\in [0,n[$ lorsque si t_i est supérieur ou égal à son éventuel voisin de gauche et son éventuel voisin de droite. Par exemple, t_0 est un maximum local si et seulement si $t_0 \ge t_1$.

- 1. Montrer que tout tableau non vide possède au moins un maximum local.
- 2. Écrire une fonction qui détermine un maximum local en cout linéaire.
- 3. Écrire une fonction récursive qui détermine un maximum local en cout logarithmique.

Exercice 6 : Calcul de complexité

Pour chacune des fonctions suivantes, évaluez la complexité temporelle en fonction de n.

Exercice 7: Le mur

Vous êtes face à un mur qui s'étend à l'infini dans les deux directions. Il y a une porte dans ce mur, mais vous ne connaissez ni la distance, ni la direction dans laquelle elle se trouve. Par ailleurs, l'obscurité vous empêche de voir la porte à moins d'être juste devant elle. Décrire un algorithme vous permettant de trouver cette porte en un temps linéaire vis-à-vis de la distance qui vous sépare de celle-ci.

Exercice 8 : Problème proposé par le CCC (Comité Contre les Chats)

Le problème est de déterminer à partir de quel étage d'un immeuble sauter du balcon est fatal à un chat. Vous êtes dans un immeuble à n étages (numérotés de 1 à n) et vous disposez de k chats. Il n'y a qu'une opération possible pour tester si la hauteur d'un étage est fatale : faire sauter un chat du balcon. S'il survit, vous pouvez le réutiliser ensuite, sinon vous ne pouvez plus. Vous devez proposer un algorithme pour trouver la hauteur à partir de laquelle un saut est fatal en faisant le minimum de lancers.

- 1. Si $k \ge \lceil \log n \rceil$, proposer un algorithme en $O(\log n)$ sauts.
- 2. Si $k < \lfloor \log n \rfloor$, proposer un algorithme en

$$O\left(k + \frac{n}{2^{k-1}}\right)$$

sauts.

3. Si k=2, proposer un algorithme en $O(\sqrt{n})$ sauts.

6.4. EXERCICES 113

Exercice 9: Poulidor forever

Expliquer comment trouver le deuxième plus grand élément d'un tableau $[a_0, \ldots, a_{n-1}]$ en effectuant au plus $n + \lfloor \log n \rfloor - 2$ comparaisons. Vous pouvez procéder par analogie avec un tournoi à élimination directe en remarquant que le deuxième joueur le plus fort fait nécessairement partie des adversaires malheureux du vainqueur.

Algorithme récursif

Exercice 10 : Version récursive de la somme des éléments d'un tableau

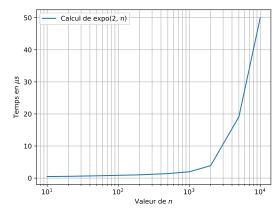
- 1. Écrire une fonction somme_tableau(t: list[int]) -> int de manière récursive en utilisant le fait que la somme des éléments d'un tableau vide est nulle et que si t est un tableau de taille $n \ge 1$, la somme de ses éléments est la somme de son premier élément et des éléments restants.
- 2. Calculer la complexité de cette fonction en utilisant le fait que la création d'une tranche de taille n nécessite n opérations élémentaires.
- 3. Comparer la performance de cette fonction avec une version itérative de cet algorithme.

Exercice 11 : Complexité de l'exponentiation rapide

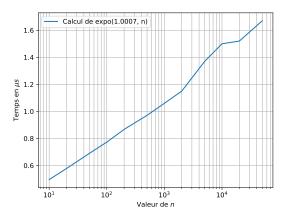
On considère la fonction suivante :

```
1 def expo(a, n):
2    if n == 0:
3        return 1
4    elif if n % 2 == 0:
5        return expo(a * a, n // 2)
6    else:
7        return a * expo(a, n - 1)
```

- 1. On note M(n) le nombre de multiplications effectuées lors de l'appel $\exp(a, n)$, pour $n \ge 0$. Exprimer M(2n+1) et M(2n) en fonction de M(n).
- 2. En déduire que pour tout $n \ge 1$, on a $M(n) \le 1 + 2\log_2 n$.
- 3. Quelle est la complexité de la fonction expo?
- 4. Expérimentalement, en mesurant le temps d'exécution de expo(2, n) et de expo(1.0007, n), on obtient les courbes suivantes. Comment expliquer ce phénomène?



Graphique semilog pour l'exponentiation rapide d'un entier.



Graphique semilog pour l'exponentiation rapide d'un flottant.

Exercice 12: Autour de l'exponentiation rapide

On souhaite écrire une fonction récursive qui calcule a^n .

1. Écrire une telle fonction qui exploite la relation

$$\forall n \in \mathbb{N}, \quad a^n = a^{\left\lfloor \frac{n}{2} \right\rfloor} a^{\left\lceil \frac{n}{2} \right\rceil}.$$

2. Évaluer le nombre de multiplications à effectuer et comparer cet algorithme avec l'algorithme d'exponentiation rapide.

Exercice 13: Fibonacci

Dans l'algorithme d'exponentiation rapide permettant de calculer x^n , rien n'impose que x soit un entier. On peut notamment appliquer cet algorithme lorsque x est une matrice. Dans tout l'exercice, lors des questions de complexité, on comptera uniquement les opérations arithmétiques : la somme et le produit de deux entiers.

1. Écrire une fonction Python

qui réalise la multiplication de deux matrices A et B à coefficients entiers, supposées carrées, de même taille $m \times m$. Quelle est la complexité de cette fonction?

2. En déduire une fonction

qui calcule M^n pour une matrice M de taille $m \times m$ en utilisant l'algorithme d'exponentiation rapide. Donner la complexité de cette fonction en fonction de m et n.

On définit la suite de Fibonacci par

$$F_0 := 0, \qquad F_1 := 1, \qquad \text{et} \qquad \forall n \in \mathbb{N}, \quad F_{n+2} := F_{n+1} + F_n.$$

3. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

- 4. En déduire une fonction fibo(n: int) -> int qui calcule F_n avec une complexité en $\Theta(\log n)$.
- 5. Soit $b \ge 2$. Montrer que si d_n est le nombre de chiffres de F_n en base b, alors

$$d_n = \Theta(n)$$
.

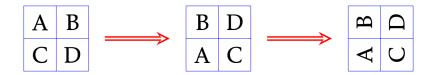
En quoi ce résultat semble contradictoire avec le résultat de la question précédente? Expliquer pourquoi ces deux résultats ne sont finalement pas en contradiction.

6.4. EXERCICES 115

Exercice 14: Rotation

Les processeurs graphiques possèdent en général une fonction de bas niveau appelée blit (ou transfert de bloc) qui copie rapidement un bloc rectangulaire d'une image d'un endroit à un autre. L'objectif de cet exercice est de faire tourner une image carrée de $n \times n$ pixels de 90° dans le sens direct en adoptant une stratégie récursive.

- On découpe l'image en 4 blocs de taille $(n/2) \times (n/2)$.
- On déplace chacun de ses blocs à sa position finale à l'aide de 5 blits.
- On fait tourner récursivement chacun de ces blocs.



On supposera dans tout l'exercice que n est une puissance de 2.

- 1. Exprimer en fonction de n le nombre de fois que la fonction blit est utilisée.
- 2. Quel est le cout total de cet algorithme lorsque le cout d'un blit d'un bloc $k \times k$ est en $\Theta(k^2)$.
- 3. Et lorsque ce cout est en $\Theta(k)$.

6.4.3 Calcul de complexité temporelle et spatiale

Algorithme itératif

Exercice 15: Grenouille

Une petite grenouille se trouve face à une rivière. Initialement située sur une des deux rives à la position 0, elle veut se rendre sur la rive opposée à la position m + 1. Elle ne peut réaliser que des sauts d'une unité. Heureusement pour elle, des feuilles tombent à la surface de la rivière et peuvent lui permettre de sauter de feuille en feuille.

On se donne un tableau t composé de n entiers représentant les feuilles qui tombent : $t_k \in [\![1,m]\!]$ représente la position où la feuille tombe à l'instant k. L'objectif est de trouver le moment le plus précoce où la grenouille pourra passer d'une rive à l'autre, c'est-à-dire la date à laquelle toutes les positions de 1 à m seront couvertes par une feuille.

1. Rédiger une fonction

qui résout ce problème. Par exemple, pour m=5 et t=[1,3,1,4,5,3,2,4], cette fonction devra renvoyer 6.

- 2. Évaluer la complexité temporelle et spatiale de cette fonction.
- 3. Si ce n'était pas le cas de votre fonction précédente, implémenter une nouvelle version de cette fonction ayant une complexité temporelle en O(n) et une complexité spatiale en O(n).

Algorithme récursif

Exercice 16: Mémoïsation

On souhaite calculer les termes de la suite (u_n) définie par

$$u_0 \coloneqq 1 \quad \text{et} \quad \forall n \in \mathbb{N}^*, \quad u_n \coloneqq \frac{u_{n-1}}{1} + \frac{u_{n-2}}{2} + \dots + \frac{u_0}{n}.$$

Pour cela, on utilise la fonction suivante :

On note c_n le nombre de divisions qui sont effectuées lors de l'appel suite(n).

- 1. Donner une relation de récurrence reliant c_n et les c_k pour $0 \le k < n$.
- 2. Montrer que

$$\forall n \in \mathbb{N}, \quad c_n = 2^n - 1.$$

En déduire la complexité de la fonction suite.

3. Écrire une fonction non récursive effectuant le même calcul en un temps plus raisonnable. On pourra utiliser une liste memo de longueur n+1, que l'on remplira successivement avec les termes u_0, u_1, \ldots, u_n . On déterminera la complexité temporelle et la complexité spatiale de cette nouvelle fonction.

Exercice 17: Coefficients binomiaux

1. Écrire une fonction récursive binome(k: int, n: int) -> int calculant le coefficient $\binom{n}{k}$ en utilisant les relations suivantes :

$$\forall n \in \mathbb{N}, \qquad \binom{n}{0} = \binom{n}{n} = 1$$
$$\forall k, n \in \mathbb{N}, \qquad \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}.$$

2. Que pensez-vous de la performance de cette fonction?

Afin d'améliorer les performances de la fonction précédente, on se donne une valeur $N \in \mathbb{N}$ et on crée un tableau bidimensionnel que l'on utilisera comme variable globale.

```
coeff = [[-1 for n in range(N + 1)] for k in range(N + 1)]
```

L'élément coeff [k] [n] à pour vocation de contenir le coefficient $\binom{n}{k}$. Le fait qu'il contienne initialement -1 est là pour signaler que ce coefficient n'a pas encore été calculé.

3. Écrire une fonction binome_memoisation(k: int, n: int) → int qui, lorsqu'il est appelé avec les entiers k et n tels que 0 ≤ n ≤ N et 0 ≤ k ≤ n, renvoie (ⁿ_k) s'il est déjà stocké dans le tableau coeff à la place coeff[k][n] et qui le calcule de manière récursive dans le cas où ce n'est pas déjà le cas, c'est-à-dire si coeff[k][n] est égal à −1. On veillera, dans ce dernier cas, à stocker le résultat du calcul dans le tableau coeff avant de renvoyer ce résultat.

Chapitre 7

Correction

« Beware of bugs in the above code; I have only proved it correct, not tried it. »

— Donald Knuth (1938–)

THE PROBLEM WITH AVERAGING STAR RATINGS

7.1 Co	rrection
7.1.1	Spécification d'une fonction
7.1.2	2 Correction partielle, correction totale
7.2 Als	gorithme itératif
7.2.1	Terminaison
7.2.2	2 Correction
7.2.3	Exemples fondamentaux
7.3 Als	gorithme récursif
7.4 Ex	ercices
7.4.1	Correction
7.4.2	2 Algorithme itératif
7.4.3	Algorithme récursif

7.1 Correction

7.1.1 Spécification d'une fonction

La spécification d'une fonction, c'est le contrat qu'elle doit respecter. On peut la découper ainsi :

- Entrées :
 - Nombre et types des arguments : par exemple, « cette fonction prend en entrée une liste t d'entiers et un entier x ».
 - Préconditions: une ou plusieurs conditions qui doivent être vérifiées par les entrées pour que la fonction s'exécute correctement. Par exemple, « les éléments de la liste doivent être distincts », « la liste doit être triée par ordre croissant », « l'entier passé en argument est positif », etc. Si ces préconditions ne sont pas vérifiées, la fonction peut avoir un comportement arbitraire. Autrement dit, elle fait ce qu'elle veut, par exemple renvoyer un résultat arbitraire, planter, formater le disque dur, envoyer la totalité des images présentes sur votre ordinateur à tous vos contacts de messagerie, etc.

— Sorties :

- Type du résultat : par exemple, « cette fonction renvoie un entier », ou « cette fonction renvoie un tuple formé d'un entier et d'une liste d'entiers », ou « cette fonction renvoie None ».
- Valeur du résultat : si la fonction renvoie une « vraie » valeur (différente de None), que doit vérifier cette valeur ? Par exemple, « la fonction renvoie n! où n est l'argument » ou « la fonction renvoie une liste contenant les mêmes éléments que l'argument, mais triée par ordre croissant ».
- Effets secondaires (éventuellement): Tous les effets que la fonction a sur le monde, en dehors du renvoi de son résultat. Typiquement, modification de l'argument ou d'une variable globale, affichage sur l'écran, suppression de toutes les données de l'ordinateur, envoi de missiles intercontinentaux, etc. Par exemple : « après l'exécution de la fonction, le tableau passé en argument est trié et contient les mêmes éléments qu'au départ ».

Remarques

- ⇒ On peut regrouper « effets secondaires » et « valeur du résultat » sous le terme postconditions.
- ⇒ Une fonction ne doit pas avoir d'effets secondaires autres que ceux apparaissant dans sa spécification. Par exemple, la fonction suivante n'est pas une manière acceptable de calculer le maximum d'un tableau.

```
1 def apres_moi_le_deluge(t):
2     """apres_moi_le_deluge(t: list[int]) -> int"""
3     for i in range(1, len(t)):
4         t[i] = max(t[i], t[i - 1])
5     return t[-1]
```

En effet, son exécution ne laisse pas le système dans un état acceptable :

```
1 In [1]: [7, 2, 9, 0]
2
3 In [2]: apres_moi_le_deluge(t)
4 Out[2]: 9
5
6 In [3]: t
7 Out[3]: [7, 7, 9, 9]
```

⇒ En pratique, on essaie souvent d'éviter les comportements totalement arbitraires. S'il y a un moyen simple et efficace de vérifier que les préconditions sont remplies, on peut préférer faire ces tests pour détecter un éventuel problème le plus tôt possible. Pour cela, on utilisera le mot clé assert déjà utilisé pour les tests unitaires. Par exemple, pour une fonction calculant la factorielle, on écrit :

```
1 def factorielle(n):
2    """factorielle(n: int) -> int"""
3    assert n >= 0
4    f = 1
5    for i in range(1, n + 1):
6         f = f * i
7    return f
```

Ainsi, un appel sur un entier n < 0 sera immédiatement détecté comme une erreur :

```
In [1]: factorielle(-1)
AssertionError:
```

7.1. CORRECTION 119

Sans le assert, la fonction aurait renvoyé un résultat dénué de sens, 1 en l'occurrence, sans se plaindre, ce qui aurait rendu l'erreur beaucoup plus difficile à détecter.

 \Rightarrow Attention cependant, ce conseil n'est pas toujours possible à appliquer, car la précondition peut être trop couteuse, voire impossible, à vérifier. Par exemple, si l'on effectue une recherche dichotomique dans une liste triée, algorithme qui s'exécute dans le pire des cas en $\Theta(\log n)$, il serait absurde de vérifier que la liste est bien triée car cette opération a une complexité en $\Theta(n)$. Enfin, il faut avoir conscience que ces assertions ne sont utiles qu'en « production » et il est bien entendu inutile d'en placer dans un écrit de concours, sauf si cela vous est explicitement demandé.

7.1.2 Correction partielle, correction totale

Définition 7.1.1: Terminaison d'une fonction

On dit qu'une fonction *termine* lorsqu'elle renvoie un résultat en un nombre fini d'étapes, quelles que soient les valeurs de ses paramètres vérifiant les préconditions.

Remarque

⇒ Le nombre d'étapes de calcul ne sera en général pas borné, puisqu'il dépend de la valeur des paramètres.

Exemple

 \Rightarrow La fonction suivante calcule n! pour $n \ge 0$.

```
1 def factorielle(n):
2     """factorielle(n: int) -> int"""
3     if n == 0:
4         return 1
5     else:
6         return n * factorielle(n - 1)
```

On considère qu'elle termine, car il y a une précondition $n \ge 0$. Cependant, si on l'appelle sur un entier n < 0, l'appel récursif ne termine pas.

Définition 7.1.2: Correction partielle

Une fonction est dite *partiellement correcte* par rapport à sa spécification lorsque, quelles que soient les valeurs des paramètres vérifiant les préconditions :

- Soit elle renvoie un résultat conforme à la spécification.
- Soit elle ne termine pas.

Définition 7.1.3: Correction totale

Une fonction est dite totalement correcte, ou simplement correcte, si elle est partiellement correcte et qu'elle termine.

Exemples

⇒ La fonction suivante est partiellement correcte, vis-à-vis de n'importe quelle spécification : il n'y a aucun risque qu'elle renvoie un résultat incorrect.

```
1 def f(x):
2    return f(x)
```

 \Rightarrow La fonction suivante est censée calculer x^n pour $x \in \mathbb{Z}$ et $n \in \mathbb{N}$.

```
1 def puissance(x, n):
2     """puissance(x: int, n: int)"""
3     if n == 1:
4         return x
5     else:
6         return x * puissance(x, n - 1)
```

Elle est partiellement correcte, mais pas totalement correcte: en effet, puissance(x, 0) ne termine pas.

7.2 Algorithme itératif

7.2.1 Terminaison

La preuve de la terminaison d'un programme n'utilisant que des boucles for est immédiate. En présence de boucles while, prouver la terminaison peut être arbitrairement compliqué : ce problème est *indécidable*, c'est-à-dire qu'il n'existe pas d'algorithme permettant de déterminer si un programme quelconque termine. Cela n'empêche pas de montrer la terminaison dans de nombreux cas particuliers.

Définition 7.2.1: Variant de boucle Un variant de boucle est une quantité : — entière — minorée — qui décroit strictement à chaque passage dans une boucle.

Proposition 7.2.2

Si une boucle admet un variant de boucle, alors elle termine.

Remarque

Exemple

⇒ Considérons la fonction suivante.

```
1 def log2(n):
2    """log2(n: int) -> int"""
3    i = 0
4    x = n
5    While x > 1:
6         x = x // 2
7         i = i + 1
8    return i
```

Alors x est un variant de boucle.

- C'est un entier.
- Il est minoré par 1, tant qu'on est dans la boucle.
- En notant x' la valeur en fin d'itération, on a $x' \coloneqq \lfloor x/2 \rfloor \leqslant x/2 < x$ puisque $x \geqslant 1$, donc il est strictement décroissant.

Cette fonction termine donc. Attention, si l'on remplace la condition de la boucle par x >= 0, la terminaison n'est plus assurée, car la décroissance n'est plus stricte.

Exercice 1

⇒ On considère la fonction suivante.

- 1. iu est-il un variant de boucle? Même question pour iv.
- 2. Identifier un variant de boucle.

3. Quelle précondition doit être vérifiée par u et v pour que cette fonction soit « correcte ». Il faut bien sûr commencer par préciser ce que *correcte* signifie ici, en s'aidant du nom de la fonction.

Les variants de boucle ne sont pas le seul outil : fondamentalement, tout type de raisonnement peut être utilisé pour prouver la terminaison d'une fonction.

Exemples

⇒ Considérons la fonction ci-dessous.

```
1 def inv_fact(n):
2     """inv_fact(n: int) -> int"""
3     i = 0
4     f = 1
5     while f < n:
6         i = i + 1
7         f = f * i
8     return i
</pre>
```

Une récurrence simple montre qu'après k passages dans la boucle, i vaut k!. Comme $k! \to +\infty$, il est alors « clair » que ce programme termine pour toute valeur de n.

⇒ Considérons maintenant le programme suivant.

```
1 def syracuse(n):
2    """syracuse(n: int) -> int"""
3    k = n
4    i = 0
5    while k != 1:
6         i = i + 1
7         if k % 2 == 0:
8         k = k // 2
9         else:
10         k = 3 * k + 1
11    return i
```

Si vous arrivez à montrer qu'il termine pour toute valeur de n, faites-moi signe.

7.2.2 Correction

Les preuves de correction simples de programmes itératifs reposent sur le principe d'invariant de boucle, idée très similaire à celle d'une récurrence mathématique.

```
Définition 7.2.3: Invariant de boucle

Un invariant de boucle est un prédicat \mathcal{I} ayant les propriétés suivantes :

— il est vrai ayant de rentrer dans la boucle
```

Remarques

⇒ Un invariant de boucle n'a cependant aucune raison d'être vrai en milieu d'itération.

- si il est vrai au début d'une itération, il reste vrai à la fin de cette itération.

- \Rightarrow Pour une boucle conditionnelle (boucle while) avec une condition $\mathcal C$ et un invariant $\mathcal I$, on commence par prouver que $\mathcal I$ est vérifié avant de rentrer dans la boucle, puis on montre l'hérédité, c'est-à-dire que ($\mathcal C$ et $\mathcal I$) $\longrightarrow \mathcal I$: si la condition de boucle et l'invariant sont vérifiés en début d'itération, alors l'invariant est vérifié en fin d'itération. En sortie de boucle, (non $\mathcal C$) et $\mathcal I$ seront alors vrais.
- \Rightarrow Pour une boucle *inconditionnelle* (boucle for), on rédigera la preuve d'invariant en incorporant l'indice de boucle au prédicat. Pour effectuer la correction d'une boucle du type « for k in range(a, b) », on définit les prédicats $\mathcal{I}_a, \ldots, \mathcal{I}_b$ et on prouve que :
 - \mathcal{I}_a est vérifié avant de rentrer dans la boucle.
 - Pour tout $k \in [a, b[$, si \mathcal{I}_k est vérifié au début de l'itération d'indice k, \mathcal{I}_{k+1} est vérifié en fin d'itération. En sortie de boucle, \mathcal{I}_b sera alors vrai.
- ⇒ Comme pour la terminaison, les preuves de correction peuvent être arbitrairement difficiles : la correction d'un programme peut dépendre d'une conjecture mathématique, par exemple.

 \Rightarrow Dans les preuves, on notera souvent x la valeur de la variable x en début d'itération et x' sa valeur en fin d'itération.

Exemples

 \Rightarrow On souhaite montrer que le programme suivant renvoie bien le pgcd des entiers $a, b \in \mathbb{N}$.

```
1 def pgcd(a, b):
2    """pgcd(a: int, b: int) -> int"""
3    while b > 0:
4         a, b = b, a % b
5    return a
```

On note a_0 et b_0 les valeurs de a et b passées en argument. On définit le prédicat

```
\mathcal{I} : « a, b \in \mathbb{N} et \operatorname{pgcd}(a, b) = \operatorname{pgcd}(a_0, b_0) »
```

puis on montre que \mathcal{I} est un invariant de boucle. On montre enfin qu'en sortie de boucle a contient $\operatorname{pgcd}(a_0,b_0)$ ce qui prouve la correction partielle de la fonction. Comme de plus b est un variant de boucle, la correction totale de la fonction est prouvée.

 \Rightarrow On souhaite montrer que le programme suivant renvoie bien un indice du minimum de t. Pour cela, on considère l'invariant de boucle \mathcal{H}_i : « $m = \min(t_0, \dots, t_{i-1})$ et t[ind] = m ». On note n la longueur de t.

- \mathcal{H}_1 est vérifié avant de rentrer dans la boucle car ind = 0 et $m = t_0 = \min(t_0)$.
- Pour $1 \le i \le n-1$, en supposant \mathcal{H}_i vraie en début d'itération, on a deux cas :
 - Si $t_i < \min(t_0, \dots, t_{i-1}) = m$, alors en fin d'itération $m' = t_i$ et ind' = i, ce qui est correct puisqu'alors $\min(t_0, \dots, t_i) = t_i$.
 - Sinon, on a $\min(t_0,\ldots,t_i)=\min(t_0,\ldots,t_{i-1})=m=t_{ind}$. Or on ne fait rien dans ce cas et l'on a donc m'=m et ind'=ind, ce qui est bien correct.

À la fin de l'exécution, \mathcal{H}_n est donc vraie, c'est-à-dire $m = \min(t_0, \dots, t_{n-1}) = \min t$ et t[ind] = m. La variable ind contient donc bien un indice du minimum de t.

En pratique, dans un cas aussi simple, on se contentera au mieux de donner l'invariant de boucle sans démonstration. Dans des cas plus compliqués, en revanche, la preuve est indispensable.

7.2.3 Exemples fondamentaux

Les deux algorithmes présentés ici sont à connaitre absolument.

Exponentiation rapide, version itérative

On considère la fonction expo(a: int, n: int) -> int, dont la spécification est :

```
Pr\'{e}condition: n \geqslant 0
```

 $R\acute{e}sultat : expo(a, n) = a^n$

- 1. Montrer que $x \cdot b^p = a^n$ est un invariant de boucle.
- 2. En déduire la correction partielle de la fonction.
- 3. Montrer la correction totale de la fonction.

Recherche dichotomique

On considère l'algorithme suivant :

```
Entrées: un tableau t = (t_0, \dots, t_{n-1}) et une valeur x
```

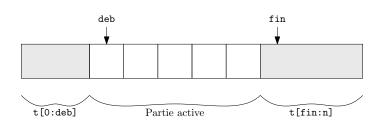
 $Pr\'{e}condition: t$ est trié par ordre croissant

Résultat : un indice $i \in [0, n]$ tel que $t_i = x$ s'il en existe un, n sinon.

Algorithme Recherche dichotomique dans un tableau trié

```
fonction Recherche(x,t)
deb \leftarrow 0
fin \leftarrow n
tant \ que \ fin - deb > 0 \ faire
milieu \leftarrow (deb + fin)//2
si \ t_{milieu} = x \ alors
renvoyer \ milieu
sinon \ si \ t_{milieu} < x \ alors
deb \leftarrow milieu + 1
sinon
fin \leftarrow milieu
renvoyer \ n
```

▷ Division entière



- 1. Montrer que cet algorithme termine.
- 2. Montrer que si l'algorithme renvoie un indice $i \neq n$, alors ce résultat est correct.
- 3. Montrer qu'on a l'invariant suivant : « $x \notin t[0:deb] \cup t[fin:n]$ ».
- 4. En déduire la correction de l'algorithme.
- 5. L'algorithme reste-t-il totalement ou partiellement correct si
 - (a) on remplace la ligne $deb \leftarrow milieu + 1$ par $deb \leftarrow milieu$?
 - (b) on remplace la ligne $fin \leftarrow milieu$ par $fin \leftarrow milieu 1$?

7.3 Algorithme récursif

En première approche, la terminaison d'un programme récursif repose sur l'existence d'un certain nombre, potentiellement infini, de cas de base et sur la certitude que toute suite d'appels finit par arriver sur l'un de ces cas de base. La correction d'un programme récursif est parfois nettement plus simple à prouver que celle d'un programme itératif équivalent. En effet, la correspondance entre le code et les identités mathématiques qui le justifient peut apparaître beaucoup plus clairement dans le cas récursif.

Le cas le plus simple et le plus fréquent est celui d'un programme ayant une définition de ce type :

- f(0) est donné.
- $-\forall n \in \mathbb{N}^*, f(n) := g(n, f(n-1))$ où g est une fonction que l'on sait calculer.

Il est alors immédiat de prouver la terminaison par récurrence, et souvent possible de prouver simultanément la correction.

Exercice 2

 \Rightarrow Montrer que le programme suivant termine et calcule n!, pour tout entier $n \ge 0$.

```
1 def factorielle(n):
2     """factorielle(n: int) -> int"""
3     if n == 0:
4         return 1
5     else:
6         return n * factorielle(n - 1)
```

Il arrive souvent qu'une récurrence forte soit nécessaire afin de prouver la correction d'une fonction. C'est le cas pour l'implémentation récursive de l'exponentiation rapide.

```
1 def expo(x, n):
2    """expo(x: int, n: int) -> int"""
3    if n == 0:
4         return 1
5    else:
6         if n % 2 == 0:
7         return expo(x * x, n // 2)
8         else:
9         return x * expo(x, n - 1)
```

Pour tout $n \in \mathbb{N}$, on pose

 \mathcal{H}_n : « Pour tout $x \in \mathbb{Z}$, l'appel expo(x, n) termine et renvoie x^n »

- \mathcal{H}_0 est vraie: En effet, si $x \in \mathbb{Z}$, l'appel expo(x, 0) termine et renvoie $1 = x^0$.
- $\forall n \in \mathbb{N}^*$, $\mathcal{H}_0, \dots, \mathcal{H}_{n-1} \Longrightarrow \mathcal{H}_n$: En effet, soit $n \in \mathbb{N}^*$. Supposons que $\mathcal{H}_0, \dots, \mathcal{H}_{n-1}$ sont vraies et montrons que \mathcal{H}_n est vraie. On effectue la division euclidienne de n par 2. Il existe donc $m \in \mathbb{N}$ et $r \in \{0,1\}$ tels que n = 2m + r.
 - Si r = 0, alors on appelle $\exp(x * x, m)$. Or n = 2m, donc comme n > 0, on en déduit que $0 \le m < n$, donc \mathcal{H}_m est vraie. Donc cet appel termine et renvoie $(x^2)^m = x^{2m} = x^n$.
 - Sinon r = 1 et on appelle $\exp(x, n 1)$. Comme $0 \le n 1 < n$, alors \mathcal{H}_{n-1} est vraie. Donc cet appel termine et renvoie x^{n-1} . Donc la fonction termine et renvoie $x \times x^{n-1} = x^n$.

Donc \mathcal{H}_n est vraie.

Par récurrence forte, on en déduit la correction totale de la fonction expo.

Ce qui rend possible la récurrence forte est la décroissance stricte de l'argument au cours des appels récursifs. Comme dans le cas itératif, cet argument est appelé variant. Cependant, il arrive parfois que la suite des arguments ne soit pas strictement décroissante, soit parce que cela n'a pas de sens, soit parce que c'est simplement faux. Dans ce cas, on peut chercher une fonction φ de l'ensemble des arguments dans $\mathbb N$ dont les valeurs décroissent strictement au cours des appels successifs. Autrement dit, on cherche une fonction φ à valeurs dans $\mathbb N$ telle que, dès que le programme f contient un appel du type $f(x) \to f(y)$, on ait $\varphi(y) < \varphi(x)$. Dans ce cas, le variant est bien entendu $\varphi(x)$.

Exercice 3

 \Rightarrow Justifier la terminaison de la fonction suivante.

7.4. EXERCICES 125

```
1 def f(n):
2    """f(n: int) -> int"""
3    if n % 2 != 0 or n == 0:
4        return n
5    else:
6        return f((3 * n) // 2)
```

7.4 Exercices

7.4.1 Correction

Spécification d'une fonction

Correction partielle, correction totale

7.4.2 Algorithme itératif

Terminais on

Correction

Exercice 1: Multiplication

Démontrer que l'algorithme de multiplication de deux entiers est correct

En donner ensuite une version récursive.

Exercice 2 : Fonction mystère

Prouver la terminaison et déterminer ce que calcule la fonction suivante :

```
1 def f(a):
2     y = 0
3     z = 1
4     u = 0
5     while y <= a:
6          y = y + z
7          z = z + 2
8          u = u + 1
9     return u - 1</pre>
```

Exercice 3: Fonction mystère

En déterminant un invariant, déterminer le rôle de la fonction suivante.

```
1 def f(n):
2     i = 0
3     s = 0
4     while s < n:
5         s = s + 2 * i + 1
6         i = i + 1
7     return i
</pre>
```

Exercice 4: Fonction mystère

Déterminer ce que calcule la fonction suivante, et prouvez-le

```
def f(u):
      x = 0
      y = u
3
      c = 1
      d = 1
      while y > 0 or c > 0:
6
          a = y \% 2
7
          if (a + c) \% 2 == 1:
8
              x = x + d
9
           c = a * c
10
           d = 2 * d
11
           y = y // 2
      return x
13
```

$Exemples\ fondamentaux$

7.4.3 Algorithme récursif

Exercice 5: Multiplication

Après avoir expliqué ce qu'elle fait, montrer la terminaison et la correction de la fonction suivante prenant en entrée deux entiers $a, b \in \mathbb{N}$.

```
1 def mult(a, b):
2    """mult(a: int, b: int) -> int"""
3    if a == 0:
4        return 0
5    else:
6        mult(a // 2, 2 * b) + (a % 2) * b
```

Exercice 6: Fonction mystère

On considère la fonction suivante prenant en entrée deux entiers naturels non nuls $a,b\in\mathbb{N}^*$.

```
1 def f(a, b):
2    """f(a: int, b: int) -> int"""
3    if b == 1 :
4        return a
5    return a + f(a, b - 1)
```

- 1. Démontrer la terminaison de cette fonction.
- 2. Que fait la fonction f? Justifier rigoureusement.
- 3. Sans justification, préciser ce que fait la fonction g suivante où $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

7.4. EXERCICES 127

```
1 def g(a, b):
2    """g(a: int, b: int) -> int"""
3    if a < b:
4        return 0
5    else:
6        return 1 + g(a - b, b)</pre>
```

Exercice 7: Fonction de McCarthy

On considère la fonction récursive suivante.

```
1 def f(n):
2    """f(n: int) -> int"""
3    if n > 100:
4        return n - 10
5    return f(f(n + 11))
```

- 1. Prouver sa terminaison lorsque $n \in \mathbb{Z}$.
- 2. Déterminer ce qu'elle calcule.

Exercice 8: Fonction de Hofstadter

On considère la fonction g de Hofstadter définie sur $\mathbb N$ de la manière suivante.

```
1 def g(n):
2    if n == 0:
3        return 0
4    return n - g(g(n - 1))
```

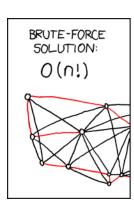
- 1. Prouver sa terminaison lorsque $n \in \mathbb{N}$.
- 2. Si vous avez l'inspiration, prouvez que

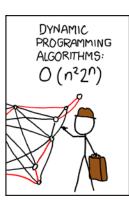
$$\forall n \in \mathbb{N}, \quad g(n) = \left\lfloor \frac{n+1}{\varphi} \right\rfloor$$

où $\varphi \coloneqq \frac{1+\sqrt{5}}{2}$ est le nombre d'or.

Chapitre 8

Graphe





8.1.1	Graphe non orienté
8.1.2	Graphe orienté
8.1.3	Graphe pondéré
8.1.4	Représentation d'un graphe
8.2 Alg	orithmes sur les graphes $\dots \dots \dots$
8.2.1	Parcours générique d'un graphe
8.2.2	Parcours en profondeur
893	Parcours en largeur
0.2.0	Tureours on hargour.

8.1 Graphe

8.1.1 Graphe non orienté

Définition 8.1.1

On appelle graphe non orienté tout couple G := (S, A) où

- S est un ensemble fini non vide dont les éléments sont appelés noeuds, ou sommets.
- A est un ensemble de paires $\{x,y\}$, où x et y sont deux éléments distincts de S. Ces paires sont appelées arêtes, ou arcs.

Remarques

- \Rightarrow En pratique, l'arête $\{x,y\}$ sera notée x-y ou y-x. On utilisera aussi les notations xy ou yx. Intuitivement, une arête x-y permet de passer du sommet x au sommet y et du sommet y au sommet x. Deux sommets reliés par une arête sont dits adjacents. On appelle voisin d'un sommet x tout sommet adjacent à x.
- ⇒ Dans notre définition, nous nous sommes interdit les *boucles*, c'est-à-dire les arêtes reliant un sommet à lui-même. Nous n'autorisons pas non plus le fait d'avoir plusieurs arêtes entre deux sommets. Les graphes s'autorisant de telles arêtes sont appelés *multigraphes*.

 \Rightarrow Dans un graphe non orienté

$$|A| \leqslant \frac{|S|\left(|S|-1\right)}{2}.$$

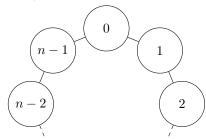
 \Rightarrow Lorsqu'on parle d'un graphe à n sommets sans préciser S, on prend $S \coloneqq \llbracket 0, n \rrbracket$.

Exemples

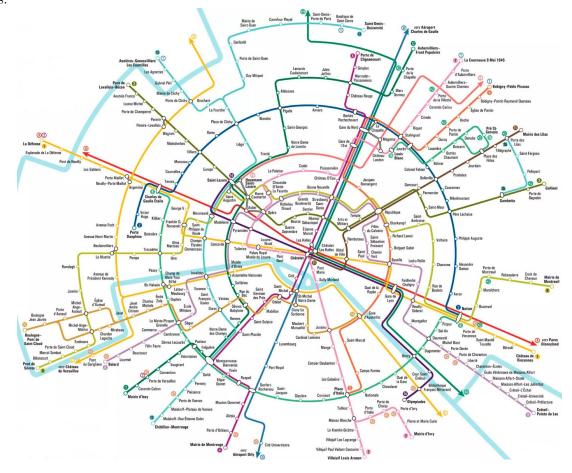
 \Rightarrow Le graphe entièrement déconnecté possède n sommets et aucune arête.

 \Rightarrow Le graphe *chemin* à n sommets \mathcal{K}_n possède une arête entre i et $j \in [0, n[$ si et seulement si j = i + 1.

 $\Rightarrow \text{ Le graphe } \textit{cycle} \ \text{`a n sommets } \mathcal{C}_n \ (\text{pour } n \geqslant 3) \ \text{poss\`ede une ar\^ete entre } i \ \text{et } j \in [\![0,n[\![\ \text{si et seulement si } j \equiv i+1 \ [n] .$



- \Rightarrow Le graphe des utilisateurs de Facebook a un sommet pour chaque utilisateur et une arête entre deux sommets lorsque deux utilisateurs sont *amis*. Notons que |S| est de l'ordre de 10^9 et que |A| est de l'ordre de 10^{11} , ce qui pose quelques difficultés algorithmiques.
- ⇒ Dans le graphe du métro parisien, les sommets représentent les stations de métro et les arêtes, les liaisons entre ces stations.



8.1. GRAPHE 131

Définition 8.1.2

On appelle degré d'un sommet x le nombre d'arêtes de la forme x - y.

Remarque

⇒ Le degré d'un sommet est son nombre de voisins.

Définition 8.1.3

On appelle *chemin* de longueur n toute suite $c := z_0, z_1, \dots, z_n$ de n+1 sommets telle que

$$\forall k \in \llbracket 0, n \rrbracket, \quad z_k - z_{k+1} \in A.$$

Les sommets z_0 et z_n sont appelés extrémités du chemin et on dit que c relie z_0 à z_n .

Remarques

- \Rightarrow On peut aussi voir un chemin de longueur n comme une suite de n arêtes consécutives. Un chemin de longueur n est constitué de n+1 sommets et de n arêtes.
- \Rightarrow On accepte les chemins de longueur nulle, reliant un sommet à lui-même, sans arête.
- \Rightarrow Dans la suite, on notera l(c) la longueur d'un chemin c.

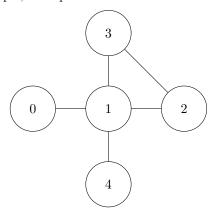
Définition 8.1.4

Un chemin z_0, z_1, \ldots, z_n est dit

- élémentaire lorsqu'il ne passe pas deux fois par le même sommet, c'est-à-dire lorsque les sommets sont deux à deux distincts.
- simple s'il ne passe pas deux fois par la même arête, c'est-à-dire lorsque les arêtes $z_k z_{k+1}$ sont deux à deux distinctes.

Remarque

 \Rightarrow Tout chemin élémentaire est simple. Cependant la réciproque est fausse puisque sur le graphe non orienté ci-dessous, le chemin 0-1-2-3-1-4 est simple, mais pas élémentaire.



Définition 8.1.5

Un sommet y est dit accessible depuis un sommet x lorsqu'il existe au moins un chemin reliant $x \ge y$.

Remarque

⇒ Puisqu'on accepte les chemins de longueur nulle, tout sommet est accessible depuis lui-même.

Proposition 8.1.6

Dans un graphe non orienté, la relation d'accessibilité est une relation d'équivalence sur S.

Remarques

- \Rightarrow Si y est accessible depuis x, alors x est accessible depuis y. On dit alors que x et y sont connectés.
- ⇒ On appelle composante connexe toute classe d'équivalence pour cette relation.

Définition 8.1.7

On dit qu'un graphe non orienté est *connexe* lorsqu'il ne possède qu'une seule composante connexe, c'est-à-dire lorsque tous ses sommets sont connectés.

Définition 8.1.8

Si y est un sommet accessible depuis un sommet x, on appelle distance entre x et y l'entier

$$d(x, y) := \inf \{l(c) : c \text{ est un chemin de } x \text{ à } y\}.$$

Un chemin de longueur minimale de x à y est un chemin c de x à y tel que l(c) = d(x, y).

Remarques

- \Rightarrow Lorsque y n'est pas accessible depuis x, la convention est de poser $d(x,y) := +\infty$.
- ⇒ Conformément à ce qu'on attend d'une distance

$$\begin{aligned} \forall x \in S, & & \operatorname{d}(x, x) = 0, \\ \forall x, y \in S, & & \operatorname{d}(y, x) = \operatorname{d}(x, y), \\ \forall x, y, z \in S, & & \operatorname{d}(x, z) \leqslant \operatorname{d}(x, y) + \operatorname{d}(y, z). \end{aligned}$$

Définition 8.1.9

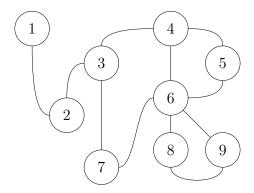
On appelle cycle tout chemin simple de longueur non nulle dont les deux extrémités sont identiques.

Remarques

- ⇒ Dans la définition, il est nécessaire de se limiter aux chemins simples, sinon on pourrait construire des « cycles » dans les graphes en parcourant une même arête dans un sens puis dans l'autre.
- ⇒ Dans un graphe non orienté, la longueur d'un cycle est supérieure ou égale à 3.
- ⇒ Un cycle sera dit *élémentaire* lorsque la seule répétition de sommets est celle de ses extrémités. Un cycle est élémentaire si et seulement si il ne contient pas d'autre cycle.
- \Rightarrow On dit qu'un graphe est *acyclique* lorsqu'il ne possède pas de cycle.

Exemple

 \Rightarrow Dans le graphe suivant, le chemin 4-5-6-9-8-6-4 est un cycle. Ce graphe possède 4 cycles élémentaires.



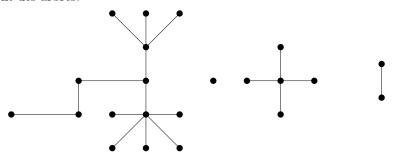
Définition 8.1.10

On appelle arbre tout graphe connexe acyclique.

8.1. GRAPHE 133

Remarques

⇒ Les graphes suivants sont des arbres.



⇒ Les arbres que nous avons manipulés dans les chapitres précédents sont ce qu'on appelle des arbres enracinés. Ce sont des arbres pour lesquels on a choisi un sommet appelé racine. La distance d'un sommet à la racine est appelée profondeur. Ces arbres sont conventionnellement dessinés de façon à ce que les sommets de même profondeur soient à même hauteur.

Exercice 1

⇒ En choisissant successivement trois racines pour l'arbre de gauche ci-dessus, dessiner de manière conventionnelle l'arbre enraciné ainsi obtenu

8.1.2 Graphe orienté

Définition 8.1.11

On appelle graphe orienté tout couple G := (S, A) où

- S est un ensemble fini non vide dont les éléments sont appelés sommets.
- A est un ensemble de couples (x, y), où x et y sont deux éléments distincts de S. Ces paires sont appelées arcs.

Remarques

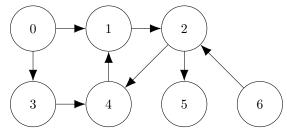
- \Rightarrow En pratique, l'arc (x,y) sera noté $x \to y$ ou xy. Intuitivement, un arc $x \to y$ permet de passer du sommet x au sommet y mais pas du sommet y au sommet x. S'il y a un arc $x \to y$, on dit que x est un prédécesseur de y et que y est un successeur de x.
- $\Rightarrow\,$ Dans un graphe orienté

$$|A| \leqslant |S| (|S| - 1).$$

- \Rightarrow En pratique, on confondra souvent un graphe non orienté G := (S, A) avec son graphe orienté associé G_o . Ce dernier possède les mêmes sommets que G. De plus, $x \to y$ est un arc de G_o si et seulement si $x y \in A$. En particulier, dans G_o , dès que $x \to y$ est un arc, $y \to x$ en est un autre.
- ⇒ Les arbres enracinés s'orientent naturellement depuis leur racine : lorsqu'on les dessine de manière conventionnelle, on les oriente du haut vers le bas.
- \Rightarrow À un graphe orienté $G \coloneqq (S, A)$, on associe le graphe non orienté G_{no} obtenu en « oubliant » l'orientation des arcs.

Exemples

⇒ Voici un exemple de graphe orienté à 7 sommets. C'est sur cet exemple que nous détaillerons l'exécution de nos algorithmes dans la seconde partie de ce chapitre.



- \Rightarrow Le graphe du web possède un sommet pour chaque page web et un arc de x vers y lorsque la page x contient un lien vers la page y. C'est ce graphe que les moteurs de recherche parcourent pour construire leur index. La taille du graphe du web est inconnue mais Google indexe plus de 50 milliards de pages.
- \Rightarrow Le graphe des utilisateurs d'Instagram a un sommet pour chaque utilisateur et un arc de x vers y lorsque x est un follower de y. Contrairement au graphe des utilisateurs de Facebook qui est non orienté, celui d'Instagram l'est.

Définition 8.1.12

Dans un graphe orienté, on appelle

- degré entrant d'un sommet x, le nombre d'arcs de la forme $y \to x$.
- degré sortant d'un sommet x, le nombre d'arcs de la forme $x \to y$.
- degré total d'un sommet, la somme de son degré entrant et de son degré sortant.

Remarque

⇒ Le degré entrant d'un sommet est son nombre de prédécesseurs et le degré sortant, son nombre de successeurs.

Définition 8.1.13

On appelle chemin de longueur n toute suite $c := z_0, z_1, \ldots, z_n$ de n+1 sommets telle que

$$\forall k \in \llbracket 0, n \rrbracket, \quad z_k \to z_{k+1} \in A.$$

Les sommets z_0 et z_n sont appelés extrémités du chemin et on dit que c relie z_0 à z_n .

Remarques

- ⇒ Comme dans les graphes non orientés, on définit la notion de chemin élémentaire et de chemin simple. Les chemins élémentaires sont simples, mais la réciproque est fausse.
- \Rightarrow La notion d'accessibilité se définit aussi de la même manière. Cependant, dans un graphe orienté, ce n'est plus une relation d'équivalence sur S. Les notions de connexité et de composante connexe n'ont plus de sens pour ces graphes.
- \Rightarrow La notion de distance entre un sommet x et un sommet y est toujours définie. L'inégalité triangulaire reste vraie, mais la distance n'est plus symétrique.
- ⇒ La notion de cycle se définit toujours de la même manière dans un graphe orienté. Cependant, contrairement à ce qui se passe dans le cas des graphes non orientés, il existe des cycles de longueur 2.

8.1.3 Graphe pondéré

Définition 8.1.14

On appelle graphe pondéré la donnée d'un graphe $G \coloneqq (S,A)$ et d'une application $\rho:A \to \mathbb{R}_+$ appelée poids.

Exemple

⇒ Voici le graphe non orienté des connexions ferroviaires françaises, le poids représentant les temps de trajet en dizaines de minutes.

Remarques

- ⇒ Un graphe pondéré peut être orienté ou non orienté.
- ⇒ Il est possible de considérer des graphes pondérés avec des fonctions de poids prenant des valeurs négatives. Mais dans ce cours, puisque c'est une condition pour pouvoir appliquer l'algorithme de Dijkstra, nous nous limiterons à des fonctions de poids positives.
- \Rightarrow On appelle poids du chemin $c\coloneqq z_0,z_1,\ldots,z_n$ le réel positif

$$\rho(c) \coloneqq \sum_{k=0}^{n-1} \rho(z_k z_{k+1}).$$

 \Rightarrow On appelle poids d'un graphe la somme des poids de ses arêtes.

Définition 8.1.15

Si y est un sommet accessible depuis un sommet x, on définit

$$\delta(x, y) := \inf \{ \rho(c) : c \text{ est un chemin de } x \text{ à } y \}.$$

Un chemin de poids minimal de x à y est un chemin c de x à y tel que $\rho(c) = \delta(x, y)$.

Remarque

 \Rightarrow Dans le cas où les poids sont des distances, par exemple si G est le graphe d'un réseau routier, on pourra parler de distance et de plus court chemin. Il ne faut cependant pas confondre le réel $\delta(x,y)$ avec l'entier d(x,y) représentant le nombre minimal d'arcs entre x et y.

8.1.4 Représentation d'un graphe

Définition 8.1.16

Soit G := (S, A) un graphe où $S = \llbracket 0, n \llbracket$. On appelle matrice d'adjacence la matrice $M \in \mathcal{M}_n(\mathbb{Z})$ définie par

$$\forall i,j \in \llbracket 0,n \llbracket \,, \quad m_{i,j} \coloneqq \begin{cases} 1 & \text{si j est un successeur de i,} \\ 0 & \text{sinon.} \end{cases}$$

Remarques

- ⇒ Un graphe est « non orienté » si et seulement si sa matrice d'adjacence est symétrique.
- ⇒ Puisqu'on interdit les boucles, une matrice d'adjacence n'a que des 0 sur la diagonale.
- \Rightarrow On peut représenter un graphe pondéré par une matrice d'adjacence $M \in \mathcal{M}_n(\mathbb{R})$. On prend pour coefficient $m_{i,j}$ la valeur None lorsqu'il n'existe pas d'arc de i à j, et le poids $\rho_{i,j}$ de l'arc allant de i à j lorsqu'un tel arc existe.

Définition 8.1.17

Soit G := (S, A) un graphe où S = [0, n[. On appelle liste d'adjacence le tableau g de longueur n tel que pour tout $i \in [0, n[$, g_i est la liste des successeurs $j \in [0, n[$ de i.

Remarque

- \Rightarrow On peut représenter un graphe pondéré par une liste d'adjacence dans laquelle, pour tout sommet i, g_i est la liste des couples $(\rho_{i,j}, j)$ où j est un successeur de i.
- ⇒ Dans la suite de ce cours, nous utiliserons des listes d'adjacence pour stocker les graphes pondérés.

8.2 Algorithmes sur les graphes

8.2.1 Parcours générique d'un graphe

Supposons que vous êtes enfermé dans un labyrinthe de salles, connectées entre elles par des portes. Nous représentons ce labyrinthe par un graphe dont les sommets sont les salles et les arêtes sont les portes reliant ces salles entre elles. Si l'on souhaite sortir de ce labyrinthe, un réflexe naturel est d'emprunter au hasard les portes que l'on croise. Cependant, cette stratégie possède deux défauts importants : elle ne nous dit pas ce qu'on doit faire lorsqu'on tombe

dans un cul-de-sac et elle ne nous empêche pas de tourner en rond.

Pour résoudre ces deux problèmes, la solution la plus simple est de marquer les salles. Au cours de notre exploration, nous choisirons donc de les placer successivement dans 3 états différents :

- Inconnu : C'est l'état dans lequel est une salle qui n'a pas encore été découverte.
- Découvert : C'est l'état dans lequel on place une salle lorsqu'on l'a aperçue par une porte.
- Visité: C'est l'état dans lequel est une salle dans laquelle nous sommes déjà entrés.

Pour ne pas tourner en rond, il suffit de ne pas entrer dans une salle qui a déjà été visitée. Pour ces salles, on peut choisir de marquer leur sol d'une croix blanche. Et pour savoir que faire lorsqu'on est dans un cul-de-sac, il suffit de garder une trace des salles que l'on a découvertes, mais qui n'ont pas encore été visitées. Pour cela, on conserve avec nous un sac contenant une marque pour chacune d'elles.

Revenons au vocabulaire des graphes. À l'aide de ces deux outils, notre sac ainsi que le marquage des sommets, nous sommes armés pour parcourir l'ensemble des sommets accessibles depuis notre sommet de départ. Ce sommet est appelé source. Pour cela, il nous suffit de suivre l'algorithme suivant, que nous appelons « parcours générique ».

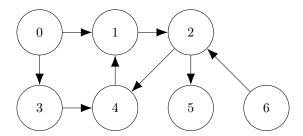
Algorithme	Parcours générique	
mettre le son	mmet $source$ dans le sac	
tant que le	sac n'est pas vide faire	
prendre i	in sommet x dans le sac	
$\mathbf{si} x \mathbf{n'a}$	pas été visité alors	
marq	uer le sommet x comme visité	
\mathbf{pour} chaque arc xy faire		
m	ettre le sommet y dans le sac	

La seule propriété dont notre sac a besoin est qu'on puisse y mettre des sommets pour les extraire plus tard. L'ordre dans lesquels ces sommets sont extraits n'a pas d'importance pour le moment.

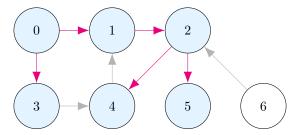
Proposition 8.2.1

L'algorithme de parcours générique visite tous les sommets accessibles depuis la source et uniquement ceux-là.

Supposons que l'on garde en mémoire le sommet depuis lequel on visite chaque sommet, en ne mettant pas le sommet y dans notre sac, mais plutôt l'arc $x \to y$. Un parcours générique mettra ainsi en valeur un arbre, enraciné en la source, couvrant l'ensemble des sommets accessibles. Par exemple, en considérant le graphe ci-dessous,



si les arcs que l'on sort du sac sont successivement $\varnothing \to 0$, $0 \to 1$, $1 \to 2$, $0 \to 3$, $2 \to 4$ et $2 \to 5$, on obtient l'arbre enraciné suivant :



Par la suite, nous utiliserons principalement nos sacs pour y placer des sommets. Cependant, lors de certains raisonnements, il sera parfois utile de faire comme si on y avait placé un arc.

La structure de données que nous allons utiliser pour implémenter notre sac va déterminer l'ordre dans lequel les sommets en sont extraits.

- *Pile*: Si nous utilisons une pile, pour laquelle c'est le dernier sommet qui a été placé dans le sac qui en est extrait, nous obtiendrons ce qu'on appelle un *parcours en profondeur*. Bien que tous les parcours nous permettent d'obtenir l'ensemble des sommets accessibles depuis un sommet, la simplicité de la structure de pile fait que c'est souvent ce parcours que nous utiliserons pour cela. Nous verrons aussi que le parcours en profondeur nous permet de détecter les cycles dans un graphe.
- *File*: Si nous utilisons une file, pour laquelle c'est le premier sommet qui a été placé dans le sac qui en est extrait, nous obtiendrons ce qu'on appelle un *parcours en largeur*. Ce parcours nous sera utile pour trouver le chemin de longueur minimale entre la source et les sommets accessibles depuis cette dernière.
- File de priorité: L'utilisation d'une file de priorité nous permettra de découvrir une famille d'algorithmes fonctionnant avec les graphes pondérés. Ils se distinguent par les différentes priorités qu'ils utilisent.
 - *Dijkstra*: L'algorithme de Dijkstra nous permet de trouver le chemin de poids minimal entre la source et les sommets accessibles depuis cette dernière. Pour cela, la priorité utilisée est le poids du chemin qui nous a permis de découvrir le sommet.
 - *Prim*: L'algorithme de Prim nous permet de trouver un arbre de poids minimal couvrant l'ensemble des sommets accessibles. Pour cela, la priorité que nous utiliserons est le poids de l'arc qui nous a permis de découvrir le sommet.

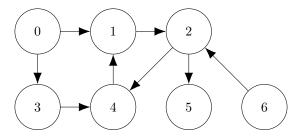
Commençons par étudier le plus simple de ces parcours : le parcours en profondeur.

8.2.2 Parcours en profondeur

Version itérative

L'implémentation Python du parcours en profondeur se fait naturellement. On suppose ici que $\mathcal{S}\coloneqq \llbracket 0,n \llbracket$ et que le graphe est représenté par sa liste d'adjacence. Pour marquer les sommets, nous utilisons le tableau $visit\acute{e}$, de longueur n, dont tous les éléments sont initialisés à False. Pour le sac, nous utilisons la liste pile que nous utilisons, comme son nom l'indique, comme une pile.

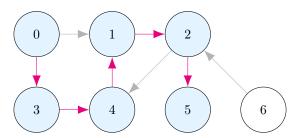
Si l'on souhaite effectuer une action pour chaque sommet, il suffit de définir une fonction f(x: int) -> NoneType que l'on appelle juste avant l'instruction visite[x] = True. Par exemple, si l'on souhaite afficher à l'écran les sommets visités dans l'ordre de notre parcours, il suffit d'insérer print(x) ligne 9.



Illustrons son fonctionnement en détail sur un exemple. Le tableau ci-dessous détaille les différentes étapes du parcours en profondeur du présent graphe à partir du sommet 0. Le contenu de la *pile* est détaillé lors du passage ligne 6, tout comme l'ensemble des sommets marqués dans *visité*.

pile	$visit\'e$	action
[0]	{}	Dépiler 0, le marquer et empiler ses successeurs 1 et 3.
[1, 3]	{0}	Dépiler 3, le marquer et empiler son successeur 4.
[1, 4]	$\{0, 3\}$	Dépiler 4, le marquer et empiler son successeur 1.
[1, 1]	$\{0, 3, 4\}$	Dépiler 1, le marquer et empiler son successeur 2.
[1, 2]	$\{0, 1, 3, 4\}$	Dépiler 2, le marquer et empiler ses successeurs 4 et 5.
[1, 4, 5]	$\{0, 1, 2, 3, 4\}$	Dépiler 5 et le marquer. Il n'a pas de successeur.
[1, 4]	$\{0, 1, 2, 3, 4, 5\}$	Dépiler 4. Il a déjà été marqué.
[1]	$\{0, 1, 2, 3, 4, 5\}$	Dépiler 1. Il a déjà été marqué.
[]	$\{0, 1, 2, 3, 4, 5\}$	pile est vide donc l'algorithme se termine.

Une fois le parcours terminé, tous les sommets atteignables à partir du sommet 0 ont été marqués, à savoir 0, 1, 2, 3, 4 et 5. Inversement, le sommet 6, qui n'est pas atteignable à partir de 0 n'a pas été marqué. C'est là une propriété fondamentale du parcours en profondeur. Le graphe ci-dessous met en valeur les sommets visités ainsi que les arcs empruntés lors de ce parcours.



Version récursive

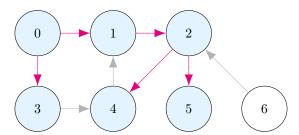
Pour lancer un parcours en profondeur depuis un sommet s, on utilisera la fonction suivante :

```
1 def profondeur(g, s):
2    """profondeur(g: list[list[int]], s: int) -> NoneType"""
3    n = len(g)
4    visite = [False for _ in range(n)]
5    profondeur_rec(g, visite, s)
```

Dans cette version, une pile est toujours présente par l'intermédiaire de la pile d'appels. Contrairement à ce qui se passe dans la version itérative, les sommets sont visités dès qu'ils sont découverts; en récursif, ces deux états sont donc confondus. Le tableau ci-dessous détaille l'ensemble des sommets marqués dans *visité* au moment de l'appel de profondeur_rec. La pile d'appel est aussi représentée dans la colonne « chemin emprunté ».

$visit\'e$	chemin emprunté	action
{}	0	Marquer 0, emprunter l'arc $0 \to 1$.
$\{0\}$	$0 \rightarrow 1$	Marquer 1, emprunter l'arc $1 \rightarrow 2$.
$\{0, 1\}$	$0 \rightarrow 1 \rightarrow 2$	Marquer 2, emprunter l'arc $2 \rightarrow 4$.
$\{0, 1, 2\}$	$0 \rightarrow 1 \rightarrow 2 \rightarrow 4$	Marquer 4, emprunter l'arc $4 \rightarrow 1$.
$\{0, 1, 2, 4\}$	$0 \to 1 \to 2 \to 4 \to 1$	Déjà découvert.
$\{0, 1, 2, 4\}$	$0 \rightarrow 1 \rightarrow 2 \rightarrow 4$	Pas d'autre arc, terminé.
$\{0, 1, 2, 4\}$	$0 \to 1 \to 2$	Emprunter l'arc $2 \to 5$.
$\{0, 1, 2, 4, 5\}$	$0 \rightarrow 1 \rightarrow 2 \rightarrow 5$	Marquer 5, aucun arc, terminé.
$\{0, 1, 2, 4, 5\}$	$0 \to 1 \to 2$	Pas d'autre arc, terminé.
$\{0, 1, 2, 4, 5\}$	$0 \rightarrow 1$	Pas d'autre arc, terminé.
$\{0, 1, 2, 4, 5\}$	0	Emprunter l'arc $0 \to 3$.
$\{0, 1, 2, 4, 5\}$	$0 \rightarrow 3$	Marquer 3, emprunter l'arc $3 \rightarrow 4$.
$\{0, 1, 2, 3, 4, 5\}$	$0 \rightarrow 3 \rightarrow 4$	Déjà découvert.
$\{0, 1, 2, 3, 4, 5\}$	$0 \rightarrow 3$	Pas d'autre arc, terminé.
$\{0, 1, 2, 3, 4, 5\}$	0	Pas d'autre arc, terminé.

On remarque que même si les sommets visités sont les mêmes que dans la version itérative, les arcs empruntés diffèrent : le parcours que l'on vient d'effectuer est un autre parcours en profondeur.



Accessibilité, connexité

Une application immédiate du parcours en profondeur consiste à déterminer s'il existe un chemin entre deux sommets x et y. Pour cela, il suffit de lancer un parcours en profondeur à partir du sommet x puis, une fois qu'il est terminé, de regarder si le sommet y fait partie des sommets visités. Le programme suivant réalise cet algorithme :

```
1 def existe_chemin(g, x, y):
2    """existe_chemin(g: list[list[int]], x: int, y: int) -> bool"""
3    n = len(g)
4    visite = [False for _ in range(n)]
5    profondeur_rec(g, visite, x)
6    return visite[y]
```

Le parcours en profondeur est un algorithme très efficace, dont la complexité temporelle est de l'ordre du nombre de sommets du graphe (pour l'initialisation de visité) auquel on ajoute le nombre d'arcs qui sont examinés pendant ce parcours. On a donc une complexité temporelle en O(|S|+|A|). En effet, chaque arc $x \to y$ est examiné au plus une fois, à savoir la première fois que la fonction $profondeur_rec$ est appelée sur le sommet x: si la fonction $profondeur_rec$ est rappelée plus tard sur ce même sommet x, alors il sera trouvé dans visité et la fonction se terminera immédiatement. Dans le pire des cas, tous les sommets sont atteignables et le graphe est entièrement parcouru. Le cout est moindre lorsque certains sommets ne sont pas atteignables depuis le sommet de départ.

La complexité spatiale de la version récursive est en $\Theta(|S|)$: cette complexité provient du tableau *visité* dont la taille est |S|, auquel on ajoute la taille de la pile d'appels qui reste toujours inférieure au nombre de sommets puisque la succession de sommets passés en argument des appels actifs forme à chaque instant un chemin élémentaire.

On peut aussi tester la connexité d'un graphe non orienté de la même manière. On utilise pour cela la fonction est_connexe :

```
def tous_vrai(t):
       """tous_vrai(t: list[bool]) -> bool"""
      for v in t:
          if not v:
               return False
      return True
6
  def est_connexe(g):
       """est_connexe(g: list[list[int]]) -> bool"""
      n = len(g)
10
      visite = [False for _ in range(n)]
11
      profondeur_rec(g, visite, 0)
12
      return tous_vrai(visite)
13
```

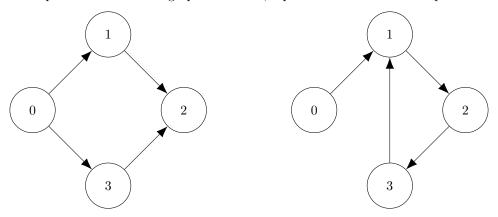
Cet algorithme a de nouveau une complexité temporelle en O(|S| + |A|) et une complexité spatiale en $\Theta(|S|)$.

Exercice 2

⇒ Écrire une fonction qui compte le nombre de composantes connexes d'un graphe non orienté.

Détection de cycle

Le parcours en profondeur permet également de détecter la présence d'un cycle dans un graphe orienté. En effet, puisque l'on marque les sommets avant de considérer leurs voisins, pour justement éviter de tourner en rond dans un cycle, alors on doit pouvoir être à même de détecter leur présence. Il y a cependant une subtilité, car lorsqu'on retombe sur un sommet déjà marqué, on ne sait pas pour autant si l'on vient de découvrir un cycle. Considérons par exemple le parcours en profondeur des deux graphes suivants, à partir du sommet 0 à chaque fois.



Dans le graphe de gauche, on retombe sur le sommet 2. Il n'y a pas de cycle pour autant, mais seulement un chemin parallèle. Dans le graphe de droite, on retombe sur le sommet 1, cette fois à cause d'un cycle. Tel qu'il est écrit, notre parcours en profondeur ne nous permet pas de distinguer ces deux situations. Dans les deux cas, on constate que le sommet est déjà visité sans pouvoir en tirer de conclusion quant à l'existence d'un cycle.

Pour y remédier, on va distinguer dans notre marquage trois sortes de sommets : ceux que l'on n'a pas encore découverts qui seront marqués comme inconnu, ceux que l'on a découvert mais qui sont toujours présents dans le chemin déterminé par la pile d'appels (ces sommets sont donc visités puisque nous utilisons une implémentation récursive dans laquelle ces deux états sont confondus), et ceux qui ne sont plus présents dans la pile d'appels, qu'on marquera comme fermé. Le parcours en profondeur est modifié de la manière suivante : lorsqu'on visite un sommet x

- S'il est marqué comme « découvert », c'est qu'on vient de découvrir un cycle.
- S'il est marqué comme « fermé », on ne fait rien.
- S'il est marqué comme « inconnu », on procède ainsi :
 - On marque le sommet x comme « découvert ».
 - On visite tous ses successeurs, récursivement.
 - Enfin, on le marque comme « fermé ».

Comme on le voit, les successeurs du sommet x sont examinés après le moment où x est marqué comme « découvert » et avant le moment où il est marqué comme « fermé ». Ainsi, s'il existe un cycle nous ramenant sur x, on le trouvera comme étant « découvert » et le cycle sera signalé.

Le programme suivant réalise cette détection de cycle. La fonction possede_cycle_rec(g, x, etat) est toujours une fonction récursive, mais elle renvoie désormais un résultat, à savoir un booléen indiquant la présence d'un cycle.

Enfin, la fonction possede_cycle marque tous les sommets comme « inconnu » puis lance un parcours en profondeur à partir de tous les sommets du graphe. Si l'un de ces parcours renvoie True, on transmet ce résultat. Sinon, on renvoie False.

```
INCONNU = 0
<sub>2</sub> DECOUVERT = 1
_3 FERME = 2
5 def possede_cycle_rec(g, etat, x):
       """possede_cycle_rec(g: list[list[int]], etat: list[int], x: int) -> bool"""
      if etat[x] == INCONNU:
           etat[x] = DECOUVERT
           for y in g[x]:
               cycle = possede_cycle_rec(g, etat, y)
               if cycle:
                   return True
12
           etat[x] = FERME
13
           return False
14
      else:
15
           return etat[x] == DECOUVERT
16
```

Enfin, dans la version suivante, on cherche à détecter la présence d'un cycle n'importe où dans le graphe. C'est pourquoi on lance un parcours en profondeur à partir de tous les sommets du graphe.

```
1 def possede_cycle(g):
2    """possede_cycle(g: list[list[int]]) -> bool"""
3    n = len(g)
4    etat = [INCONNU for _ in range(n)]
5    for x in range(n):
6         cycle = possede_cycle_rec(g, etat, x)
7         if cycle:
8             return True
9    return False
```

Pour beaucoup de ces sommets, le parcours est déjà passé par là, car ils étaient accessibles depuis des sommets déjà parcourus; la fonction parcours_cycle_rec se termine alors immédiatement sans rien faire. À nouveau, la complexité temporelle de cet algorithme est en O(|S| + |A|), et sa complexité spatiale en O(|S|).

Attention à ne pas oublier que cet algorithme ne fonctionne que pour les graphes orientés. Il nécessite quelques aménagements pour fonctionner avec les graphes non orientés.

8.2.3 Parcours en largeur

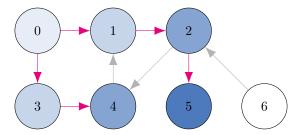
Le parcours en largeur se fait simplement en utilisant une file pour implémenter le sac de notre parcours générique :

```
import collections
2
3 def largeur(g, s):
      """largeur(g: list[list[int]], s: int) -> NoneType"""
      visite = [False for _ in range(n)]
      file = collections.deque()
      file.append(s)
      while len(file) != 0:
          x = file.popleft()
10
          if not visite[x]:
11
               visite[x] = True
12
               for y in g[x]:
13
                   file.append(y)
14
```

Illustrons son fonctionnement sur un notre exemple. Le tableau ci-dessous détaille les différentes étapes du parcours en largeur du graphe précédent à partir du sommet 0. Le contenu de la *file* est détaillé lors du passage ligne 9, tout comme l'ensemble des sommets marqués dans *visité*.

file	$visitcute{e}$	action
[0]	{}	Défiler 0, le marquer et enfiler ses successeurs 1 et 3.
[1, 3]	{0}	Défiler 1, le marquer et enfiler son successeur 2.
[3, 2]	$\{0,1\}$	Défiler 3, le marquer et enfiler son successeur 4.
[2, 4]	$\{0,1,3\}$	Défiler 2, le marquer et enfiler ses successeurs 4 et 5.
[4, 4, 5]	$\{0, 1, 2, 3\}$	Défiler 4, le marquer et empiler son successeurs 1.
[4, 5, 1]	$\{0, 1, 2, 3, 4\}$	Défiler 4. Il a déjà été marqué.
[5, 1]	$\{0, 1, 2, 3, 4\}$	Défiler 5, le marquer. Il n'a pas de successeur.
[1]	$\{0, 1, 2, 3, 4, 5\}$	Défiler 1. Il a déjà été marqué donc on ne fait rien.
[]	$\{0,1,2,3,4,5\}$	file est vide donc l'algorithme se termine.

Tout comme le parcours en profondeur, le parcours en largeur a visité exactement les sommets atteignables à partir du sommet 0. Voici les sommets visités ainsi que les arcs empruntés lors de ce parcours.



On observe que les arcs ainsi mis en valeur soulignent les chemins de longueur minimale entre la source 0 et les sommets atteignables depuis cette source. On voit que les sommets 1 et 3 sont à une distance de 1 de la source, les sommets 2 et 4 sont à une distance de 2 et le sommet 5 est à une distance de 3.

Comme pour le parcours en profondeur, un même sommet peut apparaitre plusieurs fois dans notre sac, mais le fait qu'on travaille ici avec une *file* fait que les sommets sortent de la file dans le même ordre que celui dans lequel ils y sont entrés. Une fois qu'un sommet y est entré, il est donc inutile de l'enfiler de nouveau. Cette remarque nous permet l'optimisation suivante : au lieu de marquer les sommets lorsqu'ils sont *visités*, c'est-à-dire lorsqu'ils sortent de la file, nous allons les marquer lorsqu'ils sont *découverts*, c'est-à-dire lorsqu'ils y entrent.

Contrairement à l'algorithme initial qu'on appelle parfois parcours en largeur à marquage tardif, cette nouvelle version est appelée parcours en largeur à marquage précoce. Avec cette optimisation, les valeurs successives de file sont : [0], [1, 3], [3,2], [2, 4], [4, 5], [5] et enfin []. On remarque qu'à chaque étape, la file est composée d'une succession de sommets dont la distance à la source est d suivie d'une succession (éventuellement vide) de sommets dont la distance à la source est d+1. On observe donc que le parcours en largeur explore le graphe en « cercles concentriques » à partir de la source.

Cette idée de cercles concentriques nous permet une dernière transformation de notre programme dans lequel on va travailler non pas avec un sac fonctionnant comme une file, mais avec deux sacs. À chaque instant, un des sacs, qu'on appelle courant, contient des sommets situés à une distance d de la source, tandis que l'autre sac, qu'on appelle suivant, contient des sommets à une distance d+1 de la source. On examinera ces derniers une fois que le sac courant

est vide. Par soucis de simplicité, nous utiliserons une pile pour implémenter ces deux sacs, mais nous aurions pu utiliser n'importe quelle structure de donnée séquentielle. À côté de ces deux piles, on utilise un tableau *découvert* qui marque les sommets déjà découverts. Le parcours en largeur procède ainsi :

- Initialement, la source est empilée dans courant et on la marque comme découverte.
- Tant que la pile *courant* n'est pas vide
 - On dépile le sommet x de *courant*.
 - Pour chaque successeur y de x, s'il n'a pas été marqué comme découvert, on le marque et on l'empile dans suivant.
- Si la pile *courant* est vide, on l'échange avec la pile *suivant*.

Si l'on reprend l'exemple de notre graphe exemple et qu'on effectue un parcours en largeur à partir du sommet 0, on obtient le parcours résumé dans le tableau suivant.

vu	courant	suivant	action
Ø	[]	[]	Le sommet 0 est marqué puis empilé dans courant.
{0}	[0]	[]	On dépile le sommet 0; 1 et 3 sont marqués puis empilés dans suivant.
$\{0, 1, 3\}$	[]	[1, 3]	La pile <i>courant</i> est vide; on échange.
$\{0, 1, 3\}$	[1, 3]	[]	On dépile le sommet 3; 4 est marqué puis empilé dans suivant.
$\{0, 1, 3, 4\}$	[1]	[4]	On dépile le sommet 1; 2 est marqué puis empilé dans suivant.
$\{0, 1, 2, 3, 4\}$	[]	[4, 2]	La pile <i>courant</i> est vide; on échange.
$\{0, 1, 2, 3, 4\}$	[4, 2]	[]	On dépile le sommet 2; 5 est marqué puis empilé dans suivant.
$\{0, 1, 2, 3, 4, 5\}$	[4]	[5]	On dépile le sommet 4.
$\{0, 1, 2, 3, 4, 5\}$	[]	[5]	La pile <i>courant</i> est vide; on échange.
$\{0, 1, 2, 3, 4, 5\}$	[5]	[]	On dépile le sommet 5.
$\{0, 1, 2, 3, 4, 5\}$	[]	[]	courant est vide donc l'algorithme se termine.

L'implémentation Python de cet algorithme se fait alors naturellement.

```
def largeur(g, s):
       """largeur(g: list[list[int]], s: int) -> NoneType"""
      decouvert = [False for _ in range(n)]
      decouvert[s] = True
      courant = [s]
      suivant = []
      while len(courant) != 0:
          x = courant.pop()
          for y in g[x]:
10
               if not decouvert[y]:
11
                   decouvert[y] = True
12
                   suivant.append(y)
          if len(courant) == 0:
               courant = suivant
15
               suivant = []
16
```

Si l'on souhaite effectuer une action pour chaque sommet à l'aide d'une fonction f(x: int) -> NoneType, on l'appellera juste avant d'avoir marqué le sommet avec l'instruction decouvert[x] = True, c'est-à-dire aux lignes 5 et 12.

Comme pour le parcours en profondeur, le parcours en largeur a une complexité temporelle en O(|S| + |A|) et une complexité spatiale en O(|S|). En effet, chaque sommet est placé au plus une fois dans la pile suivant, la première fois qu'il est rencontré. Donc chaque arc $x \to y$ est examiné au plus une fois, lorsque le sommet x est retiré de l'ensemble courant.

Exercice 3

⇒ Écrire une fonction prenant entrée un graphe et une source et renvoyant le tableau des distances de chaque sommet à la source. Le tableau contiendra None pour un sommet qui n'est pas accessible.

8.2.4 Plus court chemin

Dans cette section, on se donne un graphe pondéré $G := (S, A, \rho)$ ainsi qu'une source s. On rappelle que le fonction de poids avec laquelle on travaille est positive. On cherche à déterminer pour chaque sommet x, le poids minimal d'un chemin reliant s à x. Afin d'utiliser une terminologie plus conventionnelle, on imaginera que les poids représentent des distances et on utilisera les termes de distance et de plus court chemin.

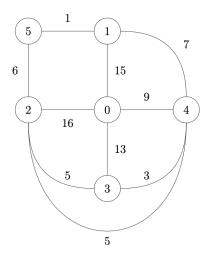
Algorithme de Dijkstra

L'implémentation de l'algorithme de Dijkstra se fait simplement en utilisant une file de priorité pour notre sac dans notre parcours générique. Les priorités sont des distances et c'est ainsi que nous les appelerons dans notre description.

- On commence par insérer la source dans la file avec une distance de 0.
- Tant que la file de priorité n'est pas vide :
 - On récupère l'élément x ayant la plus faible distance δ .
 - Si x n'a pas encore été visité :
 - On le marque comme visité. La distance δ est alors la distance entre la source et x.
 - Pour tous ses successeurs y, on les insère dans la file de priorité avec la distance $\delta + \rho(x \to y)$.

Remarquons qu'un même sommet pourra se retrouver plusieurs fois dans la file de priorité, avec des distances différentes. L'algorithme de parcours ne traitant que les sommets de la file qui n'en sont pas encore sortis, si l'on insère un sommet x avec une distance δ' et qu'il est déjà présent dans la file avec une distance $\delta \leq \delta'$, cette insertion n'affecte pas le déroulement de notre programme. Si par contre $\delta' < \delta$, c'est l'ancien élément présent dans la file qui est ignoré. Tout se passe donc comme si la distance δ du sommet x était mise à jour à $\min(\delta, \delta')$.

Afin de se familiariser avec cet algorithme, nous allons l'exécuter sur le graphe suivant, en utilisant le sommet 0 pour source.



- On commence à placer le sommet 0 dans la file avec la distance 0.
- Le seul sommet de la file est le sommet 0. C'est donc celui dont la distance est minimale. On marque ce sommet comme visité puis on regarde ses voisins : 1, 2, 3 et 4. On les place dans la file de priorité avec les distances respectives de 15, 16, 13 et 9.
- Le sommet de la file ayant une distance minimale est 4. Cette distance est de 9. On le marque comme visité, puis on regarde ses voisins : 1, 3 et 2. Le chemin passant par 4 et allant à 1 a une distance de 16 qui n'est pas inférieure à la distance actuelle pour 1. Par contre, le chemin passant par 4 et allant à 3 a une distance de 12 qui est inférieure à la distance actuelle de 13 pour 3. C'est aussi le cas du chemin passant par 4 et allant à 2 dont la distance est 14. On met donc ces distances à jour dans notre file. Les sommets de la file sont donc désormais les sommets 1, 2, et 3 de distances respectives 15, 14 et 12.
- Le sommet de la file ayant une distance minimale est 3. Cette distance est de 12. Aucun des chemins passant par 3 et menant à ses voisins ne permet d'obtenir une meilleure distance que celle que nous avons actuellement.
- Le sommet de la file ayant une distance minimale est 2. On marque ce sommet comme visité, puis on regarde ses voisins : 4, 3, 0 et 5. La distance du sommet 2 étant 14, on insère donc le sommet 5 avec une distance de 20. Les sommets de la file sont désormais les sommets 1 et 5 de distances respectives 15 et 20.
- Le sommet de la file ayant une distance minimale est 1. Cette distance est de 15. On marque ce sommet comme visité, puis on regarde ses voisins : 0, 4 et 5. Le chemin passant par 1 et allant à 5 a une distance de 16 qui est inférieure à la distance temporaire de 20. On met donc à jour cette distance.
- Le sommet de la file ayant une distance minimale est 5. Cette distance est de 16. On marque ce sommet comme visité. L'étude de ses voisins ne donne lieu à aucune mise à jour, car ils ont déjà tous été traités.
- À la boucle suivante, il n'y a plus de sommet dans notre file et l'algorithme s'arrête. Les distances du sommet 0 aux autres sommets du graphe sont donc 0 pour 0, 9 pour 4, 12 pour 3, 14 pour 2, 15 pour 1 et 16 pour 5.

Pour l'implémentation, nous utilisons le module heapq de Python.

```
1 import heapq
3 def dijkstra(g, s):
      """dijkstra(g: list[list[tuple[float, int]]], s: int) -> list[float]"""
      n = len(g)
      visite = [False for _ in range(n)]
      dist = [None for _ in range(n)]
      filep = []
      heapq.heappush(filep, (0.0, s))
9
      while len(filep) != 0:
10
          delta, x = heapq.heappop(filep)
11
          if not visite[x]:
12
               dist[x] = delta
13
               visite[x] = True
14
               for rho, y in g[x]:
15
                   heapq.heappush(filep, (delta + rho, y))
16
17
      return dist
```

Si nous ne disposons pas de file de priorité, nous pouvons en faire une implémentation à la main (qui ne sera malheureusement pas très efficace). Pour cela, nous allons utiliser deux tableaux visité et dist dont la longueur est le nombre n de sommets du graphe. Lorsqu'un sommet x est dans l'état inconnu c'est-à-dire lorsqu'il n'a pas encore été inséré dans la liste, dist[x] est égal à None et visite[x] est égal à False. Lorsqu'un sommet x est dans la file, dist[x] contient sa priorité, et visite[x] est égal à False. Enfin, lorsque x est sorti de la file de priorité, dist[x] contient la distance de la source au sommet x et visite[x] est égal à True. On commence par écrire une fonction $prochain_sommet$ qui renvoie le sommet de la file dont la distance est minimale.

```
def prochain_sommet(dist, visite):
      """prochain_sommet(dist: list[float], visite: list[bool]) -> int"""
      n = len(dist)
3
      min_value = None
      min_x = None
      for x in range(n):
6
          if (not visite[x]) and (dist[x] != None) \
7
                   and (min_value == None or dist[x] < min_value):</pre>
               min_value = dist[x]
9
10
              min_x = x
11
      return min_x
```

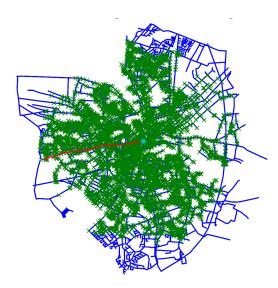
L'algorithme de Dijkstra s'écrit alors naturellement.

```
1 def dijkstra(g, s):
       """dijkstra(g:\ list[list[tuple[float,\ int]]],\ s:\ int)\ ->\ list[float]"""
2
      n = len(g)
      visite = [False for _ in range(n)]
      dist = [None for _ in range(n)]
      dist[s] = 0.0
      while True:
           x = prochain_sommet(dist, visite)
           if x == None:
9
               break
10
           visite[x] = True
11
12
           for rho, y in g[x]:
13
               delta = dist[x] + rho
               if dist[y] == None or delta < dist[y]:</pre>
14
                   dist[y] = delta
15
      return dist
```

146 CHAPITRE 8. GRAPHE

Algorithme A*

L'algorithme de Dijkstra permet de déterminer la distance d'une source s à l'ensemble des sommets accessibles depuis s. Si l'on s'intéresse uniquement à la distance entre la source et un but b, il est possible d'arrêter l'algorithme dès que le sommet b est marqué comme visité. Sur la figure ci-dessous, on a réalisé une recherche du meilleur chemin dans la ville d'Oldenburg, en Allemagne, en partant d'une source située en centre-ville et pour aller vers un but situé en périphérie, à l'ouest de la ville. Le chemin optimal trouvé est en rouge.



Nous avons colorié en vert l'ensemble des sommets « visités » par l'algorithme de Dijkstra. La zone couverte par l'algorithme est formée de tous les points dont la distance à la source est inférieure à la distance entre s et b. Cependant, notre intuition nous dit qu'il n'est surement pas utile d'aller traiter des sommets qui se trouvent tout à l'est de la ville alors que notre but est à l'ouest. Cette intuition se fonde sur le fait que la distance entre deux sommets x et y du graphe est supérieure à la distance à vol d'oiseau entre ces deux sommets.

Pour exploiter cette idée, nous allons définir la fonction $h: S \to \mathbb{R}$, appelée heuristique, par

$$\forall x \in S, \quad h(x) \coloneqq ||x - b||$$

et définir une nouvelle distance ρ' sur A en définissant, pour tout arc $x \to y$

$$\rho'(x \to y) = \rho(x \to y) + h(y) - h(x).$$

Remarquons tout d'abord que ρ' est bien à valeurs positives puisque si $x \to y$ est un arc

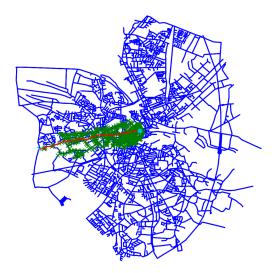
$$\rho(x \to y) \ge ||x - y|| \ge |||x - b|| - ||y - b||| \ge ||x - b|| - ||y - b|| = h(x) - h(y),$$

donc $\rho'(x \to y) = \rho(x \to y) + h(y) - h(x) \ge 0$. Remarquons enfin que, quel que soit le chemin $z_0 \to z_1 \to \cdots \to z_n$, on a $\rho'(z_0 \to z_1 \to \cdots \to z_n) = \rho(z_0 \to z_1 \to \cdots \to z_n) + h(z_n) - h(z_0)$. En particulier

$$\rho'(s \to z_1 \to \cdots \to z_{n-1} \to b) = \rho(s \to z_1 \to \cdots \to z_{n-1} \to b) + h(b) - h(s).$$

Puisque h(b) - h(s) est indépendant du chemin allant de s à b, tout chemin entre ces deux sommets de distance minimale pour ρ' est minimal pour ρ . L'algorithme de Dijkstra appliqué sur le même graphe avec la distance ρ' au lieu de la distance ρ donnera donc un même chemin minimal entre s et b. Remarquons que cette nouvelle distance va privilégier les sommets se situant en direction du but. En effet, dans le cas extrême où il existe une ligne droite entre la source et le but et plusieurs sommets du graphe sont alignés, la distance entre ces sommets pour la nouvelle distance ρ' va être nulle et ce sont bien ces sommets qui vont être traités en premier.

En reprenant la recherche du meilleur chemin entre le centre et un point de la périphérie d'Oldenburg, on voit que l'algorithme de Dijkstra appliqué à nouvelle distance traite beaucoup moins de sommets avant d'arriver sur le but, tout en garantissant le fait que le chemin trouvé a une distance minimale pour la distance d'origine.



148 CHAPITRE 8. GRAPHE

Deuxième partie TPs

Introduction, logo

Découverte de Python

Les entiers

- 1. Utiliser Python pour calculer 2022 + 2, 2^{10} , $3^2 2^3$.
- 2. Prédire avant de vérifier avec Python les résultats des opérations suivantes.

10 // 2, 11 // 3, -5 // 2, 11
$$\%$$
 3, -5 $\%$ 2

- 3. Calculer $2^{(3^2)}$, puis $(2^3)^2$.
- 4. Afficher les nombres de Mersenne premiers suivants.

$$2^3 - 1$$
, $2^7 - 1$, $2^{31} - 1$, $2^{127} - 1$, $2^{8191} - 1$, $2^{131071} - 1$.

Les flottants

1. Prédire puis vérifier le résultat des calculs suivants.

Expliquer le premier résultat.

2. Calculer

- 3. En utilisant le fait que la vitesse de la lumière est de $c \approx 3.0 \times 10^8 \text{ m.s}^{-1}$ et que la distance d entre le soleil et la terre est de $d \approx 1.5 \times 10^{11}$ m, déterminer le temps qu'il s'écoule avant que la lumière émise par le soleil arrive à la terre.
- 4. La distance moyenne entre 2 molécules d'eau liquide est de 3.4×10^{-10} m. Sachant qu'une mole contient de l'ordre de 6.0×10^{23} particules, donner un ordre de grandeur du nombre de moles dans un litre d'eau liquide.
- 5. À l'aide des fonctions du module math, calculer

$$\frac{1+\sqrt{5}}{2}$$
, $\cos\left(\frac{\pi}{3}\right)$, $\cos(\pi)$, $\sin(\pi)$, $\ln(2)$, $\log_{10}\left(1+\frac{1}{3}\right)$, $e^{\pi\sqrt{163}}$.

Expliquer pourquoi l'un de ces résultats est surprenant.

6. Calculer puis expliquer le résultat des calculs suivants.

$$(1+10^{-15})-1$$
, $(1+10^{-16})-1$, $(0.1+0.2)-0.3$, $0.1+(0.2-0.3)$

On retiendra que les erreurs d'arrondis font que l'addition sur les nombres flottants n'est pas associative.

7. Prévoir, puis vérifier le type de

Python permet de manipuler directement les nombres complexes. Le langage adopte les notations utilisées en physique : le i mathématique est noté j. Les nombres complexes en Python fonctionnent de la même manière que les nombres flottants. Le langage stocke la partie réelle et sa partie imaginaire comme des nombres flottants. Le nombre 2+i est entré sous la forme 2+i.

8. Calculer (2+i)(3+i).

Variables

- 1. Quelle valeur contient la variable a après avoir écrit a = 1 et exécuté 9 fois l'instruction a = 2 * a?
- 2. On considère les instructions suivantes

```
1 In [1]: a = 1
2 In [2]: b = a
3 In [3]: c = b
4 In [4]: b = b + 1
```

Prévoir les valeurs de a, b et c après l'exécution de ces instructions. Vérifier ensuite votre prédiction avec l'interpréteur Python.

3. À l'aide d'une troisième variable c, échanger le contenu des variables a et b.

Un peu de Logo

Ce qu'on appelle aujourd'hui les graphismes « tortue » trouvent leur origine dans le langage Logo, inventé dans les années 1960 dans un but pédagogique. Ce langage comportait un certain nombre d'instructions qui permettaient de commander un robot pouvant tracer des lignes sur une feuille de papier. La forme de ce robot, qui évoquait vaguement une tortue, a donné son nom à cette manière de produire des dessins. Le module turtle de Python implémente une tortue virtuelle qui reproduit les déplacements de son ancêtre dans une fenêtre de l'écran de votre ordinateur. C'est par son intermédiaire que nous allons découvrir quelques concepts de base de la programmation. Dans le shell, tapez l'instruction suivante :

```
In [1]: import turtle as lg
In [2]: lg.reset()
```

Une nouvelle fenêtre doit apparaitre à l'écran. Elle est peut-être cachée par Pyzo, donc redimensionnez votre espace de travail afin de pouvoir visualiser en même temps l'éditeur, le shell et cette nouvelle fenêtre. Celle-ci représente la feuille sur laquelle la tortue, représentée par défaut par la pointe d'une flèche, va réaliser ses dessins. Initialement la tortue est située au point de coordonnées (0,0) situé au centre de la feuille et est orientée vers l'est, qui correspond à un angle de 0° . On rappelle les fonctions essentielles de la tortue :

- lg.forward(c) permet à la tortue d'avancer d'une distance de c.
- lg.left(a) permet à la tortue de tourner vers la gauche d'un angle de a degrés.
- lg.right(a) permet à la tortue de tourner vers la droite d'un angle de a degrés.
- lg.reset() permet de remettre à zéro le contenu de la fenêtre graphique.
- 1. Remettre à zéro le contenu de la fenêtre graphique, puis faire dessiner par la tortue un carré de côté 100 en tournant vers la gauche.

On souhaite désormais reproduire le dessin de la figure suivante.

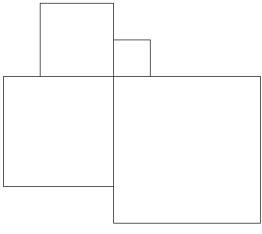


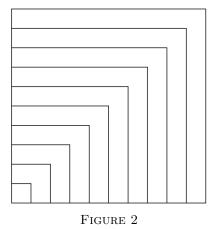
Figure 1

Il pourrait être utile de disposer d'une fonction dessinant un carré de taille c. Puisqu'il n'existe pas de telle fonction, nous allons la définir. Afin de définir une fonction, il faut lui donner un nom, préciser la liste de ses paramètres et enfin décrire les différentes instructions à réaliser. La syntaxe générale est la suivante :

Attention de bien respecter la syntaxe de l'instruction def. La ligne contenant cette instruction doit obligatoirement se terminer par un double point, et le bloc d'instructions qui suit doit être indenté, c'est-à-dire décalé vers la droite de 4 espaces. Heureusement, si vous n'avez pas fait d'erreur de syntaxe, l'éditeur de code se chargera pour vous d'indenter automatiquement votre code. Par exemple, pour définir la fonction qui nous intéresse et que nous allons nommer carre et qui dessine un carré de côté c en tournant vers la gauche, on commencera par écrire

2. Achever la définition de la fonction carre(c) en prenant soin à ce que la tortue regarde dans la même direction qu'au début une fois le tracé effectué. Puis, à l'aide de celle-ci, reproduire le dessin de la figure 1, où les carrés ont respectivement pour côté 50, 100, 150 et 200. On écrira pour cela une fonction figure1().

Nous allons maintenant chercher à reproduire le dessin de la figure suivante.



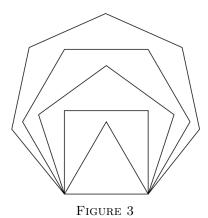
À l'aide de la fonction carre, le script n'est pas difficile à réaliser, mais peut s'avérer fastidieux à écrire. Pour en faciliter l'écriture, nous allons introduire la notion de boucle. Si a et b sont deux entiers, le script

va exécuter le bloc d'instruction en utilisant successivement $a, a+1, \ldots, b-1$ pour valeur de k.

3. À l'aide d'une boucle, écrire une fonction figure2(c) qui reproduit le dessin de la figure 2 où les carrés ont pour côtés respectifs $c, 2c, 3c, \ldots, 10c$.

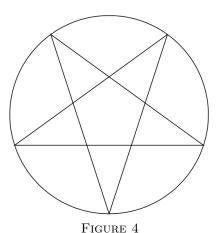
Effacer l'écran, puis augmenter la vitesse de la tortue jusqu'à sa vitesse maximale, car le dessin qui va suivre va être un peu long à tracer. Pour cela, on utilisera la fonction lg.speed(s) avec pour valeur de s un entier compris entre 1 (lent) et 10 (rapide); la valeur 0 permet aussi d'obtenir la vitesse la plus rapide. Attention, en plus d'effacer l'écran, la commande lg.reset() rétablit la vitesse d'origine.

- 4. Écrire une fonction tourne(n) qui, à l'aide d'une boucle, fait avancer la tortue de 1, puis de 2, 3, 4, ..., n pas en tournant d'un angle de 91° entre chaque déplacement. Une fois la vitesse réglée au maximum, on pourra faire un essai avec tourne (500).
- 5. Tracer un triangle équilatéral, un carré, un pentagone ou un hexagone régulier ne sont pas des tâches fondamentalement différentes. Définir une fonction polygone (n, c) qui trace un polygone régulier à n côtés, chacun de longueur c, puis reproduire à l'aide de cette fonction la figure 3.



Effacer de nouveau l'écran à l'aide de la fonction lg.reset(), puis réaliser la commande polygone(100, 5). La courbe obtenue vous étonne-t-elle? Elle peut aussi être obtenue à l'aide d'une fonction prédéfinie du module turtle qui se nomme circle, mais dont les paramètres sont différents. Pour en connaître les spécifications, vous pouvez chercher les mots-clés turtle python avec votre moteur de recherche internet et vous diriger vers le site docs.python.org. Vous constaterez que cette fonction possède trois arguments, dont deux optionnels. Le second, extent, lorsqu'il est présent, permet de tracer un arc de cercle plutôt qu'un cercle complet. Le troisième, steps, permet de tracer des polygones.

6. Écrire une fonction figure4() qui, à l'aide de la seule fonction circle, permet de reproduire le dessin de la figure 4. Une commande permet de tracer le cercle et c'est une utilisation astucieuse de la fonction circle qui permet de tracer l'étoile. Si vous ne trouvez pas rapidement, passez à la question suivante.



7. Écrire enfin une fonction figure5() permettant de reproduire le dessin de la figure 5. Ce dernier est constitué de 72 demi-cercles régulièrement espacés. Avant de tracer cette figure, il pourra être utile d'accélérer la vitesse de la tortue pour éviter une attente trop longue.

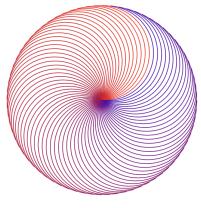


Figure 5

Le triangle de Sierpiński est une fractale qui s'obtient à partir d'un triangle plein par une infinité de répétitions consistant à diviser par 2 la taille du triangle puis à les accoler en trois exemplaires par leurs sommets pour former un nouveau triangle. On trouvera figure 6 la représentation graphique des trois premières générations de cette transformation.

Figure 6

Pour colorier l'intérieur d'une courbe fermée, il faut faire précéder le début du tracé par la commande lg.begin_fill() et terminer celui-ci par lg.end_fill(). Par exemple, le script suivant

```
1 lg.begin_fill()
2 lg.circle(100)
3 lg.end_fill()
```

crée un disque plein.

- 8. Définir une fonction sierp1(c) qui dessine la première étape de la construction du triangle de Sierpiński, c'est-à-dire un triangle plein de côté c, en prenant soin à ce que la tortue regarde dans la même direction qu'au début une fois le tracé effectué.
- 9. À l'aide de la fonction précédente, définir une fonction sierp2(c) qui dessine la deuxième étape de la construction du triangle de Sierpiński.
- 10. À l'aide de la fonction précédente, définir une fonction sierp3(c) qui dessine la troisième étape de la construction du triangle de Sierpiński.

Les questions précédentes ont du vous convaincre qu'à l'exception de la première, la n^e génération du triangle de Sierpiński s'exprime toujours de la même manière en fonction de la précédente. Pour exploiter cette remarque, nous allons utiliser une particularité des fonctions Python : elles ont la possibilité de faire appel à elle-mêmes dans leur définition. Autrement dit, si nous choisissons de passer en paramètre l'ordre n de la génération que nous voulons tracer en définissant une fonction sierpinski(n, c1), il est possible, au sein de cette définition, de faire appel à la fonction sierpinski(n - 1, c2). Mais pour cela, il faut distinguer le cas n = 1 qui se traite différemment. Pour effectuer cette distinction, on utilise l'instruction conditionnelle if dont la syntaxe est la suivante :

Notez bien l'indentation qui permet de délimiter chacun des deux blocs d'instructions. Le fonctionnement de cette instruction est le suivant : si le résultat du test est positif, le premier bloc d'instruction est réalisé. Dans le cas contraire, c'est le second. Notez que l'instruction else est optionnelle si aucune instruction de doit être réalisée dans le cas d'un test négatif.

11. Écrire la fonction sierpinski(n, c) qui dessine la génération d'ordre n du triangle de Sierpiński avec une longueur de côté égale à c. Utiliser ensuite cette fonction pour effectuer le tracé avec n = 5. N'oubliez pas d'accélérer au maximum la vitesse de la tortue car sinon, le tracé sera très long.

D'autres structures fractales peuvent être dessinées par la tortue, à commencer par l'arbre binaire représenté figure 7. Pour construire l'arbre d'ordre n et de hauteur h, on procède de la manière suivante :

- On trace le tronc de hauteur h/3 et d'épaisseur n.
- Puis on trace ses deux branches, qui sont des arbres d'ordre n-1 et de hauteur 2h/3, inclinés d'un angle de 30° .

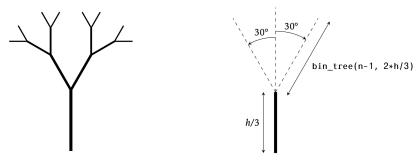


FIGURE 7 – L'arbre d'ordre n=4 et sa règle de construction

12. Définir une fonction $bin_tree(n, h)$ qui dessine l'arbre binaire d'ordre n et de hauteur h, puis dessiner l'arbre d'ordre 8.

Altimètre, Syracuse

Altimètre

Un altimètre est un instrument de mesure permettant de déterminer la distance verticale entre un point et une hauteur de référence. Lors d'une randonnée en montagne, Max étalonne son altimètre à son point de départ, puis mesure à chaque heure l'altitude relative atteinte. À la fin de sa randonnée, il obtient une liste d'entiers naturels qu'il range dans une liste Python alt = [0, 300, 500, 600, 1000, 800, 900, 500, 600, 200, 0].

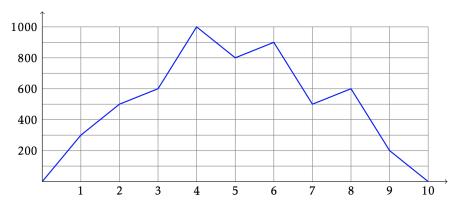


FIGURE 1 – La randonnée de Max a duré 10 heures, il a atteint une altitude relative de 300 m au bout d'une heure, de 500 m au bout de deux heures, etc.

Max souhaite maintenant calculer certaines valeurs relatives à son parcours.

- 1. Comment obtenir la durée de la randonnée?
- 2. Définir en Python une fonction altmax(alt: list[int]) -> int, qui prend en argument une liste alt et qui renvoie l'altitude relative maximale atteinte lors de sa randonnée. Par exemple, dans le cas de l'illustration numérique donnée ci-dessus, la fonction devra renvoyer la valeur 1000.

Max cherche maintenant à savoir à quel moment son ascension a été la plus rapide en calculant le dénivelé maximal réalisé en une heure. Dans toute la suite de l'exercice, le dénivelé dont nous parlons est le dénivelé algébrique, qui est positif lorsque Max monte et négatif lorsque Max descend. Il cherche donc la plus grande différence entre deux emplacements consécutifs de la liste. Par exemple, pour la liste donnée en illustration, le dénivelé maximal est égal à 400 et a été réalisé entre la troisième et la quatrième heure.

- 3. Définir en Python une fonction baptisée deniv_max(alt: list[int]) -> int prenant en argument une liste alt et renvoyant le dénivelé maximal réalisé en une heure durant sa randonnée.
- 4. Écrire une fonction heure_deniv_max(alt: list[int]) -> int renvoyant l'heure à laquelle débute la réalisation de ce dénivelé. Pour la liste donnée en exemple, cette fonction devra donc renvoyer la valeur 3.
- 5. Définir une fonction deniv_positif_total(alt: list[int]) -> int renvoyant la somme des dénivelés positifs réalisés durant cette randonnée. Pour l'exemple donné en illustration, cette fonction devra renvoyer la valeur 1200.

Enfin, on appelle *sommet* tout point dont l'altitude relative est strictement supérieure à l'altitude qu'elle précède et à l'altitude qui lui succède dans la liste alt. Dans l'exemple qui nous sert à illustrer cet exercice, la randonnée de Max présente trois sommets d'altitudes 1000, 900 et 600 atteints à la quatrième, sixième et huitième heure de marche.

6. Écrire une fonction sommets(alt: list[int]) -> NoneType affichant les différentes heures et altitudes des sommets de la randonnée.

La conjecture de Syracuse

On doit cette conjecture au mathématicien allemand Lothar Collatz qui, en 1937, proposa à la communauté mathématique le problème suivant :

On part d'un nombre entier strictement positif. S'il est pair, on le divise par 2. S'il est impair, on le multiplie par 3 et on ajoute 1. On réitère ensuite cette opération.

Par exemple, à partir de 14 on construit la suite de nombres : 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, etc. Après que le nombre 1 ait été atteint, la suite des valeurs 4, 2, 1 se répète indéfiniment en un cycle de longueur 3.

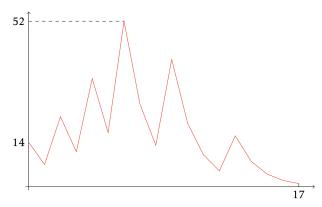


FIGURE 2 – Le graphe de la suite de Collatz pour c = 14

La conjecture de Syracuse est l'hypothèse mathématique selon laquelle n'importe quel entier de départ conduit à la valeur 1 au bout d'un certain temps. Nous allons expérimenter cette conjecture en programmant l'évolution de la suite (u_n) définie par les relations

$$u_0 \coloneqq c \qquad \text{et} \qquad \forall n \in \mathbb{N}, \quad u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair,} \\ 3u_n + 1 & \text{si } u_n \text{ est impair.} \end{cases}$$

Temps de vol et altitude maximale

1. Écrire une fonction $f(u: int) \rightarrow int$ prenant en entrée un entier u et renvoyant u/2 si u est pair et 3u + 1 si u est impair.

Le temps de vol d'un entier c est le plus petit entier n (en admettant qu'il existe) pour lequel $u_n = 1$. Par exemple, le temps de vol pour c = 14 est égal à 17.

2. Définir une fonction temps_de_vol(c: int) -> int prenant un paramètre entier c et renvoyant le plus petit entier n pour lequel $u_n = 1$.

De manière tout aussi imagée, on appelle altitude maximale de c la valeur maximale de la suite (u_n) . Par exemple, l'altitude maximale de c = 14 est égale à 52.

3. Écrire une fonction altitude(c: int) -> int qui calcule cette fois-ci l'altitude maximale pour un entier c donné en paramètre.

Vérification expérimentale de la conjecture

On désire désormais vérifier la validité de la conjecture pour toute valeur $c \le 1\,000\,000$. Une première solution consisterait à calculer le temps de vol pour toutes ces valeurs, mais ce calcul est long et il y a mieux à faire en observant que si la conjecture a déjà été vérifiée pour toute valeur c' < c, il suffit qu'il existe un rang n pour lequel $u_n < c$ pour être certain que la conjecture sera aussi vérifiée au rang c. On appelle donc temps d'arrêt le premier entier n (en admettant qu'il existe) pour lequel $u_n < c$.

1. Écrire une fonction temps_d_arret(c: int) -> int prenant un paramètre entier c et renvoyant le temps d'arrêt de la suite de Syracuse correspondante.

Nous souhaitons maintenant mesurer le temps nécessaire pour vérifier la conjecture jusqu'à un paramètre entier m. Pour cela, nous allons utiliser la fonction time du module time du même nom, sans argument, qui renvoie le temps en secondes depuis une date de référence (qui dépend du système).

2. À l'aide de cette fonction, écrire une fonction verification(m: int) -> float qui prend en argument un entier m et renvoie le temps nécessaire pour vérifier que toutes les valeurs de $c \in [\![2,m]\!]$ ont bien un temps d'arrêt fini. Quelle durée d'exécution obtient-on pour $m=1\ 000\ 000$?

3. Quel est le temps d'arrêt d'un entier pair ? d'un entier de la forme c=4n+1 ? En déduire qu'on peut restreindre la recherche aux entiers de la forme 4n+3 et modifier en conséquence la fonction précédente. Combien de temps gagne-t-on par rapport à la version précédente pour $m=1\,000\,000$? Vérifier ensuite la conjecture pour $n=10\,000\,000$.

Records

- 1. Déterminer l'altitude maximale que l'on peut atteindre lorsque $c \in [1, 1\ 000\ 000]$, ainsi que la valeur minimale de c permettant d'obtenir cette altitude.
- 2. Déterminer le temps d'arrêt maximal lorsque $c \in [1, 1 \ 000 \ 000]$ ainsi que la valeur de c correspondante.

On appelle vol en altitude de durée record un vol dont tous les temps d'arrêt de rangs inférieurs sont plus courts. Par exemple, le vol réalisé pour c = 7 est un vol en altitude de durée record (égale à 11) car tous les vols débutant par c = 1, 2, 3, 4, 5, 6 ont des temps d'arrêt de durées inférieures à 11.

3. Déterminez tous les vols en altitude de durée record pour $c \le 1~000~000$.

Affichage du vol

Pour obtenir des graphes analogues à celui de la figure 2, on utilise la fonction plot qui appartient à un module appelé matplotlib.pyplot et dédié au tracé des graphes. Vous allez donc commencer par importer celui-ci à l'aide de la commande

```
import matplotlib.pyplot as plt
```

Désormais, toutes les fonctions de ce module vous sont accessibles à condition de les préfixer par plt. Nous n'aurons besoin aujourd'hui que de deux fonctions plt.plot et plt.show. Sous sa forme la plus simple, la fonction plt.plot n'exige qu'une liste en paramètre plt.plot([a0, a1, ..., an]) et crée un graphe constitué d'une ligne brisée reliant les points de coordonnées (k, a_k) pour $k \in [0, n]$. En Python, une liste est encadrée par des crochets et ses éléments sont séparés par des virgules. Nous étudierons les listes plus tard dans le cours, mais pour l'instant nous n'aurons que besoin du fait que [] représente la liste vide et si lst est une liste, on ajoute un élément à la fin de celle-ci à l'aide de la commande lst.append(x). Une fois votre graphe créé par la fonction plt.plot, il reste à le faire apparaitre dans une fenêtre annexe à l'aide de l'instruction plt.show().

1. Définir une fonction graphique(c: int) -> NoneType qui prend un entier c en paramètre et qui construit le graphe de la suite (u_n) durant son temps de vol.

Encore une optimisation

Nous avons vu plus haut qu'il suffit de restreindre l'étude de la conjecture aux entiers de la forme 4n + 3, soit à 25% des entiers. On peut chercher à affiner cette démarche en s'intéressant aux entiers de la forme 8n + k mais ceci ne conduit pas à une amélioration des performances puisqu'on ne peut que restreindre l'étude aux entiers de la forme 8n + 3 et 8n + 7. En revanche, il est possible de restreindre l'étude aux entiers de la forme 16n + 7, 16n + 11 et 16n + 15, soit 18.75% des entiers.

1. Si on écrit les entiers sous la forme 65536n + k $(65536 = 2^{16})$, à combien de valeurs de k peut-on restreindre l'étude?

Cryptage de César

La cryptographie a pour but de transformer des messages afin qu'ils ne puissent être lus que par des personnes de confiance. Ces dernières sont les seules à connaître le mécanisme permettant d'effectuer la transformation inverse afin de retrouver le message d'origine.

Au premier siècle de notre ère est apparu un chiffrement par substitution, connu sous le nom de code de César, car l'empereur en a été l'un des plus assidus utilisateurs. Le chiffrement de César consiste à assigner à chaque lettre de l'alphabet une autre lettre, résultant du décalage de l'alphabet d'un certain nombre de lettres. Par exemple, avec le décalage suivant

a	b	c	d	е	f	g	h	i	j	k	1	m	n	О	р	q	r	s	t	u	V	w	X	У	Z
f	g	h	i	j	k	1	m	n	О	р	q	r	s	t	u	v	W	X	У	\mathbf{z}	a	b	c	d	e

le texte "vous suivez le cours de python" devient "atzx xznaje qj htzwx ij udymts". Pour décoder le message, il suffit de connaître la clé, c'est-à-dire la lettre qui correspond à la lettre "a". Dans l'exemple ci-dessus, la clé est donc "f".

Le but de ce TP est d'écrire un programme permettant de coder un message par cette méthode, puis un autre permettant de décoder ce message. On verra aussi comment attaquer cette méthode de cryptage, c'est-à-dire comment un pirate peut intercepter le message et retrouver la clé du cryptage afin de le décoder.

Codage et décodage par la méthode de César

- 1. Écrire une fonction ordre(c: str) -> int qui à une lettre de l'alphabet latin associe sa position dans l'alphabet. Par exemple, à la lettre "a", la fonction ordre associera l'entier 0 et à la lettre "z" elle associera l'entier 25. On utilisera pour cela la fonction ord de Python.
- 2. Écrire une fonction réciproque lettre(n: int) -> str qui à l'entier $n \in [0, 25]$ associe la lettre associée. Par exemple lettre(2) doit renvoyer "c".
- 3. Écrire une fonction est_lettre_alphabet(c: str) -> bool qui renvoie True si c est une lettre de l'alphabet latin et False sinon. Par exemple est_lettre_alphabet("a") va renvoyer True et est_lettre_alphabet(".") va renvoyer False.
- 4. Écrire une fonction code(m: str, c: str) -> str qui au message m et à la clé c associe le message obtenu en utilisant le codage de César. Par exemple, l'appel code("lazos rocks", "c") doit renvoyer "ncbqu tqemu".
- 5. Écrire la fonction decode(s: str, c: str) -> str qui effectue la transformation inverse. L'appel à la fonction decode("ncbqu tqemu", "c") doit renvoyer "lazos rocks".

Déterminer la clé

On intercepte un message codé par le chiffrement de César dont on ignore la clé. On veut déterminer une méthode automatique qui nous donnera la clé et le message original. Pour cela, nous allons exploiter l'idée que, dans une langue donnée, la fréquence d'apparition de chacune des lettres de l'alphabet n'est pas la même.

Au début du fichier crypto.py, il y a une liste g des fréquences d'apparition des lettres de l'alphabet en français. Par exemple, la lettre "a" apparaît, dans un texte comportant 100 caractères alphabétiques, en moyenne 8.4 fois. Pour casser le codage de César, nous allons comparer cette liste g à la liste f des fréquences obtenues dans le texte encrypté.

1. Écrire une fonction frequence(m: str) -> list[float], qui a pour argument un message m, et qui renvoie une liste de 26 éléments contenant la fréquence d'apparition de chacune des lettres de l'alphabet dans le message m. Pour cela on commencera par initialiser une liste de 26 zéros à l'aide de l'instruction f = 26 * [0].

Pour trouver la clé, on va faire « tourner » le tableau **f** des fréquences d'apparition de notre message pour le faire coı̈ncider le mieux possible avec le tableau **g** des fréquences des lettres dans la langue française.

2. Écrire une fonction distance(f: list[float], g: list[float], i: int) -> float qui a pour argument deux listes de fréquences f et g ainsi qu'un décalage $i \in [0, 25]$ et qui renvoie la distance

$$d_i := \sum_{j=0}^{25} |g_j - f_{i+j \pmod{26}}|$$

3. Écrire une fonction indice_minimum_distance(m: str, g: list[float]) -> int qui a pour argument un message m et qui renvoie l'entier i0 tel que

$$d_{i_0} = \min \{d_i : i \in [0, 25]\}.$$

- 4. Écrire une fonction decrypte(m: str, g: list[float]) -> str qui a pour argument un message m et qui renvoie le message en clair.
- 5. Tester la fonction précédente sur le message codé message présent dans le fichier distribué.

Chiffre de Vigenère

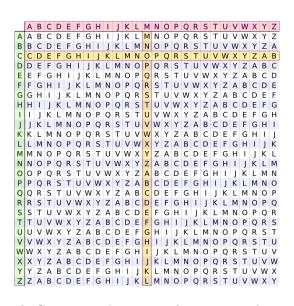
L'idée de Vigenère est d'utiliser un chiffre de César, mais où le décalage utilisé change de lettre en lettre. Pour cela, on utilise une table composée de 26 alphabets, écrits dans l'ordre, mais décalés de ligne en ligne d'un caractère. On écrit encore en haut un alphabet complet, pour la clé, et à gauche, verticalement, un dernier alphabet, pour le texte à coder.

	Α	В	С	D	Е	F	G	Н	T	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
Α	Α	В	С	D	Ε	F	G	Н	Τ	j	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
В	В	С	D	Ε	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α
C	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В
D	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С
Е	E	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
F	F	G	Н	1	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е
G	G	Н	ı	J	Κ	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F
Н	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Е	F	G
1	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н
J	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	1
K	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	Ι	J
L	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	Α	В	C	D	Е	F	G	Н	1	J	K
М	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L
Ν	N	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
0	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
Р	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	М	Ν	0
Q	Q	R	S	Т	U	٧	W	Х	Υ	Z	Α	В	С	D	Ε	F	G	Н	١	J	K	L	М	N	0	Р
R	R	S	Т	U	٧	W	X	Υ	Z	Α	В	C	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	Q
S	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
Т	Т	U	٧	W	X	Y	Z	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S
U	U	٧	W	X	Y	Z	A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т
٧	٧	W	X	Υ	Z	Α	В	С	D	Е	F	G	Н	!	J	K	L	М	N	0	P	Q	R	S	Т	U
W	W	X	Y	Z	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V
X	X	Υ	Z	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	٧	W
Y	Y	Z	A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	T	U	٧	W	X
Z	Z	Α	В	C	D	Е	F	G	Н	П	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ

Pour coder un message, par exemple "cryptographie de vigenere", on choisit une clé qui sera un mot de longueur arbitraire; prenons mathweb. On écrit ensuite cette clé sous le message à coder. Dans cette partie, on supposera que le message à coder ne comporte que des lettres de l'alphabet et pas de point, de virgule, ni d'espace. On répète la clé aussi souvent que nécessaire pour que sous chaque lettre du message à coder, on trouve une lettre de la clé.

c	r	у	p	t	О	g	r	a	р	h	i	е	d	е	v	i	g	е	n	е	r	е
m	a	t	h	w	е	b	m	a	t	h	W	е	b	m	a	t	h	W	е	b	m	a

Pour coder, on regarde dans le tableau l'intersection de la ligne de la lettre à coder avec la colonne de la lettre de la clé. Dans notre exemple, on commence par coder la lettre "c" . La clé est donnée par la lettre m. On regarde dans le tableau l'intersection de la « ligne » c et de la « colonne » m. Ainsi ce "c" sera codé par "o". Ensuite, on code la lettre "r", dont la clé est a. La lecture du tableau donne la lettre "r" (ligne r et colonne a). Ainsi de suite. Notre message sera codé par "orrwpshdaioei eq vbnarfde".



L'intérêt par rapport au codage de César est qu'une même lettre sera codée par plusieurs lettres différentes; par exemple ici "e" est codé par "i", "q", "a", "f" et "e".

- 1. Écrire une fonction code_vigenere(m: str, cle: str) -> str d'arguments un message en clair m et une clé cle. Cette fonction renverra le message codé selon le code de Vigenère avec la clé cle.
- 2. Écrire une fonction decode_vigenere(m: str, cle:str) -> str d'arguments un message codé m selon Vigenère avec la clé cle . Cette fonction renverra le message décodé.
- 3. Écrire une fonction decrypte_vigenere(m: str, n: int, g: list[float]) -> str d'arguments un message codé m selon Vigenère, la longueur de la clé n et le tableau g des fréquences des lettres dans la langue française.
- 4. Décoder message_vigenere qui a été codé avec la méthode de Vigenère, sachant que la clé possède 11 lettres.

Sudoku

Règles du Sudoku

Le sudoku est un jeu de logique de la famille des carrés latins. L'origine de son nom vient des deux mots japonais « su » qui signifie chiffre et « doku » qui signifie seul.

On dispose d'une grille de $9 \times 9 = 81$ cases divisées en $3 \times 3 = 9$ régions. Initialement, certaines cases de la grille sont préremplies par des chiffres compris entre 1 et 9. Le but du jeu est de remplir les cases restantes avec des chiffres compris entre 1 et 9 en respectant les contraintes suivantes :

- Chaque chiffre doit apparaître une seule fois dans chaque ligne.
- Chaque chiffre doit apparaître une seule fois dans chaque colonne.
- Chaque chiffre doit apparaître une seule fois dans chaque région.

La grille de sudoku est modélisée par une matrice carrée de 9 par 9, à l'aide d'une liste de listes. Pour repérer une case dans la grille, on utilise ses coordonnées (i,j) comme dans le schéma ci-dessous où $0 \le i,j < 9$. Une région est, quant à elle, définie par ses coordonnées (a,b) où $0 \le a,b < 3$.

			0			1			2	
	1 1	0	1	2						
	0		8			4	1			9
0	1	1	6				5			
	2	4			6					
			1	8	5			6		
1				2				7		
				5			9	3	8	
							7			3
2					9				7	8
		9			1	8			2	
Ċ	i^{\dagger}	_	•		•					

- 1. Récupérez le fichier grille.py. Dans ce fichier, vous trouverez la matrice g, nous donnant un exemple de grille à traiter. Les cases vides sont symbolisées par des 0. Copiez cette matrice dans votre script.
- 2. Quelle doit être la valeur de g[3][2]? Vérifiez sur votre machine.
- 3. Écrire une fonction cases_vides(g: list[list[int]]) -> list[tuple[int, int]] prenant pour argument une grille g et renvoyant la liste des coordonnées (i, j) des cases vides. Dans cet algorithme, le parcours de la grille se fera ligne par ligne.

166 CHAPITRE 12. SUDOKU

4. Écrire une fonction compat_ligne(g: list[list[int]], i: int, c: int) -> bool prenant pour argument une grille g, une ligne i et un chiffre c compris entre 1 et 9, et renvoyant True s'il est possible d'ajouter le chiffre c sur une des cases vides de la ligne i, tout en satisfaisant les contraintes de ligne du plateau. Autrement dit, cette fonction doit renvoyer True si c est différent de toutes les autres chiffres présents sur la ligne i, et False sinon.

- 5. Écrire une fonction analogue compat_colonne(g: list[list[int]], j: int, c: int) -> bool pour les colonnes, ainsi qu'une fonction compat_region(g: list[list[int]], a: int, b: int, c: int) -> bool pour les régions.
- 6. En utilisant la division entière en Python, écrire une fonction region(i: int, j: int) -> tuple[int, int] prenant pour arguments les coordonnées (i, j) d'une case et renvoyant les coordonnées (a, b) de la région dans laquelle elle se trouve.
- 7. Déduire des questions précédentes une fonction

```
compat(g: list[list[int]], i: int, j: int, c: int) -> bool
```

prenant pour arguments une grille g, les coordonnées (i,j) d'une case vide de la grille et un chiffre c entre 1 et 9 et renvoyant True s'il est possible d'ajouter le chiffre c sur la case vide de coordonnées (i,j) tout en respectant les contraintes du Sudoku portant sur les lignes, les colonnes et les régions.

Le backtracking

Il existe de nombreuses méthodes de résolution du Sudoku. Les méthodes simulant le raisonnement humain sont efficaces mais difficiles à programmer. La méthode du retour arrière systématique ou backtracking est préférable : elle teste toutes les possibilités de remplissage. Étant donnée la puissance des ordinateurs actuels, une grille solution est généralement donnée en quelques millisecondes. Détaillons cette méthode pour le jeu du Sudoku.

On commence par déterminer la liste cv des cases initialement vides de la grille. Ensuite, on teste la possibilitée de placer un 1 dans la première case vide. Si cette valeur ne rentre pas en conflit avec les chiffres déjà présents, on passe à la case vide suivante. Sinon, on teste si 2 convient, puis 3, etc. Si aucun chiffre entre 1 et 9 ne convient pour remplir une case, nous sommes face à une incompatibilité et il est alors nécessaire de revenir en arrière dans la liste de nos cases vides. On tente alors de la remplir avec une nouvelle valeur, plus grande que celle tentée précédemment.

Concrètement, supposons qu'on a déjà rempli les k premières cases vides de la liste cv. La prochaine case vide à traiter dont les coordonnées sont données par cv[k] contient une valeur c.

- Si c=0, c'est que nous venons juste de tester une nouvelle valeur pour la case vide d'indice k-1.
- Si $c \in [1,9]$, c'est que nous venons de réaliser que cette valeur a conduit à une incompatibilité en tentant de remplir les cases vides suivantes.

Dans les deux cas, nous allons tenter de remplir cette case avec un chiffre strictement supérieur à c: on commence par c+1, puis c+2, jusqu'à 9.

- Si on trouve un chiffre compatible avec le reste de la grille, on place ce chiffre dans la grille, puis on passe à la case vide d'indice k + 1.
- Si aucun chiffre n'est compatible, c'est que nous sommes face à une incompatibilité et qu'il faut revenir en arrière pour tenter un nouveau chiffre. On place donc le chiffre 0 dans la case pour signifier qu'elle est de nouveau vide et on passe à la case initialement vide d'indice k-1.

Si on note n la longueur de la liste cv, l'algorithme peut se terminer de deux manières distinctes :

- Si k = n, c'est que la grille a été entièrement remplie et donc qu'une solution a été trouvée.
- Si k = -1, c'est qu'aucune solution n'a été trouvée. L'algorithme étant exhaustif, cela prouve qu'il n'est pas possible de compléter la grille.
- 9. Écrire une fonction

```
prochain(g: list[list[int]], cv: list[tuple[int, int]], k: int) -> int
```

qui prend une telle grille où les k premières cases vides de la grille g ont été remplies, où cv contient la liste des coordonnées des cases initialement vides et qui traite comme l'on vient de voir la case de coordonnées cv[k]. Cette fonction devra renvoyer l'index de la prochaine case à traiter, qui sera soit k+1 si on a trouvé un chiffre compatible, soit k-1 si une incompatibilité a été trouvée.

- 10. Écrire la fonction solution(g: list[list[int]]) -> bool prenant en entrée une grille de Sudoku <math>g et renvoyant True s'il est possible de la résoudre (et en transformant au passage la grille g en une solution) et renvoyant False dans le cas contraire.
- 11. A l'aide de la macro %timeit de IPython, déterminer le temps de nécessaire à la résolution de la grille proposée en exemple.

Coupe de somme minimale

Coupe de somme minimale

Il n'est pas possible de déterminer à l'avance le temps que prendra un ordinateur pour exécuter un algorithme : cette caractéristique dépend de trop nombreux paramètres, tant matériels que logiciels. En revanche, il est souvent possible d'évaluer l'ordre de grandeur du temps d'exécution en fonction des paramètres de l'algorithme. Durant cette séance de travaux pratiques, nous allons écrire plusieurs algorithmes résolvant le même problème : le premier aura un temps d'exécution en $\Theta(n^3)$, le second en $\Theta(n^2)$ et le troisième en $\Theta(n)$ et nous constaterons la différence considérable qui peut exister concernant le temps d'exécution de chacune de ces trois fonctions sur des données de grande taille.

Pour mesurer le temps d'exécution, nous allons commencer par importer une fonction nommée time qui appartient à un module lui aussi nommé time. Votre code devra donc commencer par la ligne suivante :

```
1 from time import time
```

Une fois cette commande interprétée, vous disposerez d'une fonction time() vous donnant la durée exprimée en secondes depuis une date de référence qui dépend de votre système. Pour mesurer la durée d'exécution d'une portion de code, il vous suffira d'encadrer celle-ci de la façon suivante :

Dans ce problème, on considère des listes d'entiers relatifs $a := [a_0, \dots, a_{n-1}]$, et on appelle coupe de a toute suite d'éléments consécutifs de cette liste. Ainsi, une coupe est une liste de la forme $[a_i, \dots, a_{j-1}]$ avec $0 \le i \le j \le n$ qu'on notera désormais a[i:j]. À toute coupe a[i:j], on associe la somme

$$\mathbf{s}_{i,j} \coloneqq \sum_{k=i}^{j-1} a_k$$

des éléments qui la composent. Le but de ce problème est de déterminer un algorithme efficace pour déterminer la valeur minimale des sommes des coupes de a. À titre d'exemple, la somme minimale des coupes du tableau

$$a := [4, -4, 1, -1, -9, 8, -3, 8, -5, 5]$$

est égale à -13, valeur atteinte pour la coupe a[1:5].

Un générateur pseudo aléatoire

On considère la suite (u_n) définie par la donnée de $u_0 := 42$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} := (163811u_n \mod 655211) - 327607.$$

Pour expérimenter les différentes fonctions que nous allons écrire, nous allons avoir besoin de trois listes Python de longueurs respectives 1 000, 10 000 et 100 000 qu'on nommera lst1, lst2 et lst3.

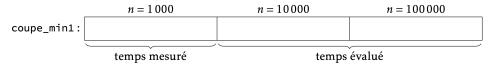
1. Écrire une fonction $f(u: int) \rightarrow int qui pour un entier <math>u \in \mathbb{Z}$ renvoie $(163811u \mod 655211) - 327607$.

- 2. Écrire une fonction genere(k: int, n: int) -> list[int] qui pour un entier $k \in \mathbb{N}$ et un entier $n \in \mathbb{N}$ renvoie la liste $[u_k, u_{k+1}, \dots, u_{k+n-1}]$ de longueur n.
- 3. Rédiger un script générant chacune de ces trois listes, avec pour contenu

$$\mathtt{lst1} = [u_i : 0 \leqslant i < 1 \ 000] \,, \qquad \mathtt{lst2} = [u_i : 1 \ 000 \leqslant i < 11 \ 000] \,, \qquad \mathtt{lst3} = [u_i : 11 \ 000 \leqslant i < 111 \ 000] \,.$$

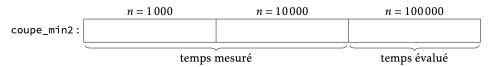
Un algorithme naïf

- 1. Définir une fonction somme (a: list[int], i: int, j: int) -> int renvoyant la somme de la coupe a[i:j].
- 2. En déduire une fonction coupe_min1(a: list[int]) -> int prenant en paramètre une liste a et renvoyant la somme minimale d'une coupe de a.
- 3. Mesurer le temps d'exécution de la fonction coupe_min1 pour la liste list1.
- 4. Montrer que si n est la longueur de la liste, le nombre d'additions effectué par cet algorithme vérifie $c(n) = \Theta(n^3)$.
- 5. Si nous avions la mauvaise idée d'utiliser cette fonction pour la liste $\mathtt{list2}$, et en admettant que le temps d'exécution soit effectivement proportionnel à n^3 , combien de temps peut-on prévoir d'attendre? Et pour $\mathtt{lst3}$? On répondra à ces questions en remplissant le tableau ci-dessous :



Un algorithme de coût quadratique

- 1. Définir, sans utiliser la fonction somme, une fonction mincoupe(a: list[int], i: int) -> int prenant en paramètres une liste a et un entier i et calculant la valeur minimale de la somme d'une découpe de a dont le premier élément est a_i. En comptant toujours les additions effectuées, quelle est la complexité de cette fonction?
- 2. En déduire une fonction coupe_min2(a: list[int]) -> int dont la complexité est en $\Theta(n^2)$, prenant en paramètre une liste a et renvoyant la somme minimale d'une coupe de a.
- 3. Mesurer le temps d'exécution de la fonction coupe_min2 pour les listes lst1 et lst2. Les deux valeurs obtenues sont-elles compatibles avec une croissance quadratique? Combien de temps peut-on prévoir d'attendre si nous utilisons cette fonction pour calculer la somme minimale d'une coupe de la liste lst3?

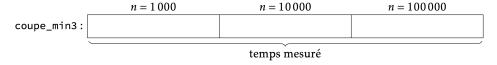


Un algorithme de coût linéaire

Étant donnée une liste a de longueur n et $i \in [0, n]$, on note

$$m_i \coloneqq \min_{0 \le u \le v \le i} s_{u,v}$$
 et $c_i \coloneqq \min_{0 \le u \le i} s_{u,i}$

- 1. Montrer que $c_{i+1} = \min(c_i + a_i, 0)$ et $m_{i+1} = \min(m_i, c_{i+1})$ et en déduire une fonction coupe_min3 de temps d'exécution linéaire calculant la valeur minimale de la somme d'une coupe de a.
- 2. Mesurer le temps d'exécution de la fonction coupe_min3 pour les listes lst1, lst2 et lst3. Ces valeurs sont-elles compatibles avec une croissance linéaire?



Un algorithme de coût quasi-linéaire

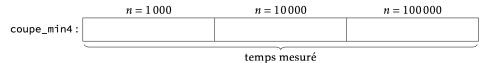
Un algorithme de type diviser pour régner est un algorithme qui scinde le problème initial en plusieurs problèmes de taille plus petite, par exemple en deux sous-problèmes de taille deux fois plus petite que le problème initial.

1. Soit $u, v \in \mathbb{N}$ tels que $0 \le u \le v \le n$ et $k \coloneqq \left\lfloor \frac{u+v}{2} \right\rfloor$. Démontrer que la coupe minimale de a[u:v] est — Soit entièrement contenue dans a[u:k].

- Soit entièrement contenue dans a[k:v].
- Soit constituée de la concaténation d'une coupe $a[i_0:k]$, de somme minimale parmi celles de la forme a[i:k] pour $u \le i \le k$ et d'une coupe $a[k:j_0]$, de somme minimale parmi celles de la forme a[k:j] pour $k \le j \le v$. À quelles condition sur v-u, les entiers k-u et v-k sont-ils tous les deux strictement inférieurs à v-u?
- 2. En déduire une fonction

utilisant ce principe afin de calculer $s_{u,v}$. En déduire une fonction coupe_min4 permettant de calculer la somme minimale d'une coupe de a.

3. Mesurer le temps d'exécution de cette fonction pour chacune des listes 1st1, 1st2 et 1st3.

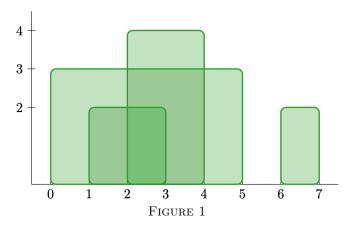


4. Il est possible de montrer que la complexité de cet algorithme est en $\Theta(n \log n)$. Compte tenu des mesures de temps obtenues, comprenez-vous la raison pour laquelle un algorithme ayant une telle complexité est qualifié de quasi-linéaire?

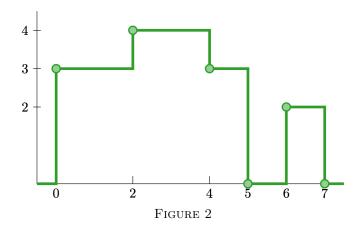
Récursif, ligne d'horizon

Ligne d'horizon

Le problème de la ligne d'horizon est le suivant : étant donné un certain nombre de rectangles posés sur l'axe des abscisses, quelle sera la ligne d'horizon visible. Les rectangles seront représentés par des tuples (a, b, h) où a est l'abscisse du coin inférieur gauche, b est l'abscisse du coin inférieur droit et h la hauteur du bâtiment. La liste des bâtiments nous sera donc donnée par une liste de type list[tuple[int, int, int]]. Par exemple, la figure 1, représente les bâtiments donnés par la liste bat = [(0, 5, 3), (1, 3, 2), (2, 4, 4), (6, 7, 2)].



La ligne d'horizon est quant à elle donnée par la liste des points à chaque changement d'ordonnée : on donne l'abscisse et l'ordonnée à droite du changement. Dans notre exemple, la ligne d'horizon visualisée sur la figure 2 sera représentée par hor = [(0, 3), (2, 4), (4, 3), (5, 0), (6, 2), (7, 0)].



1. Si hor est une ligne d'horizon avec au moins un batiment, que peut-on dire de hor [-1] [1]?

Un cas simple

Dans cette partie, on suppose que les abscisses des bords des rectangles sont des entiers compris entre 0 et n-1.

1. Écrire une fonction hauteurs (bat: list[tuple[int, int, int]], n: int) -> list[int] qui prend en argument une liste de rectangles et leur abscisse maximale, et renvoie la liste h des hauteurs de la ligne d'horizon :

pour tout $i \in [0, n-1]$, h[i] est la hauteur de la ligne d'horizon juste à droite du point d'abscisse i. Avec l'exemple ci-dessus, cette fonction appelée avec n=8 nous renverrait la liste [3, 3, 4, 4, 3, 0, 2, 0].

2. En utilisant ce qui précède, écrire une fonction

horizon_entier(bat: list[tuple[int, int, int]], n: int) -> list[tuple[int, int]] qui renvoie la liste des points de la ligne d'horizon.

3. Exprimer la complexité de ce calcul en fonction de paramètres de votre choix.

Le cas général

On ne fait cette fois-ci plus aucune hypothèse sur les abscisses des rectangles. Nous supposerons par contre pour simplifier que les abscisses des bords des rectangles sont toujours distinctes.

- 1. Écrire une fonction horizon_rectangle(a: int, b: int, h: int) -> list[tuple[int, int]] qui prend en argument les paramètres d'un rectangle et renvoie la liste des deux points qui décrivent sa ligne d'horizon.
- 2. Écrire une fonction

qui prend en argument deux lignes d'horizon et renvoie la ligne associée à l'union des deux lignes, comme sur la figure 3. On souhaite une complexité linéaire en le nombre de points dans les deux lignes.

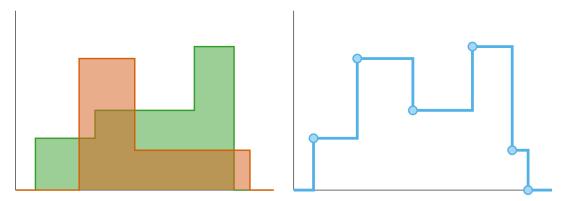


FIGURE 3 – Fusion de deux lignes d'horizon.

- 3. Écrire une fonction ligne_horizon1(bat: list[tuple[int, int, int]]) -> list[tuple[int, int]] qui renvoie la ligne d'horizon associée aux bâtiments bat, en partant d'une ligne d'horizon plate et en la fusionnant avec les lignes d'horizon des différents bâtiments. Quelle est sa complexité?
- 4. En se basant sur la méthode « diviser pour régner », écrire une fonction

ligne_horizon2(bat: list[tuple[int, int, int]]) -> list[tuple[int, int]]

ayant les mêmes spécifications. Déterminer sa complexité.

Fonction G de Hofstadter

On définit la fonction ${\cal G}$ de Hofstadter par

$$G(0) := 0,$$
 et $\forall n \in \mathbb{N}^*, \quad G(n) := n - G(G(n-1)).$

- 1. Écrire une fonction récursive G(n): int) -> int calculant G(n).
- 2. Chronométrer le temps que votre ordinateur prend pour calculer G(195).
- 3. Montrer par récurrence sur n que quel que soit $n \in \mathbb{N}$, le calcul de G(n) termine et $G(n) \leq n$.

Un problème posé par l'implémentation récursive de G et qu'on se retrouve à calculer plusieurs fois de nombreux termes G(k) lors du calcul de G(n).

4. Écrire une fonction $G_{memoization}(n: int) \rightarrow int qui renvoie <math>G(n)$ mais qui évite de calculer plusieurs fois les différents G(k). Cette fonction pourra utiliser un tableau d'entiers memo de taille n et remplir petit à petit les cases memo [k] par G(k). Quel est le temps qui est désormais nécessaire pour calculer G(195)?

Chaines de caractères

On rappelle qu'une chaine de caractères est une suite ordonnée de caractères. En Python, les chaines possèdent leur propre type qui est str, abréviation de string. La longueur d'une chaine de caractères s est obtenue à l'aide de la fonction len. Si s est une chaine de longueur n, on indexe ses caractères avec un entier $k \in [0, n[$. Le caractère d'index k est obtenu à l'aide de l'instruction s[k]. Notons qu'en Python, les caractères n'ont pas de type spécifique. Ce sont simplement des chaines de longueur 1. Dans ce TP, nous nous autoriserons uniquement à utiliser les tests == et != entre deux caractères. C'est à ces opérations que nous ferons référence quand nous parlerons de comparaison.

Comparaisons de chaines

1. Écrire une fonction is_equal(s1: str, s2: str) -> bool qui renvoie True si les chaines de caractères sont égales et qui renvoie False sinon. Si s1 et s2 n'ont pas la même longueur, cette fonction renverra tout de suite False. Si s1 et s2 ont même longueur, on renverra False dès qu'un caractère différent aura été trouvé.

La table ASCII associe à chaque caractère courant un entier compris entre 0 et 127 appelé code ASCII. Par exemple, le caractère 'a' est associé au code 97, le caractère 'b' est associé au code 98 et le caractère '0' est associé au code 48. Pour obtenir le code associé à un caractère, on utilise la fonction ord. La fonction chr permet d'obtenir un caractère à partir de son code ASCII. Cette table ne contient malheureusement que les caractères courants de la langue anglaise et elle a été étendue en une table internationale appelée table UNICODE qui contient actuellement 143 859 caractères. Les caractères accentués français font partie de cette table et ont donc un code supérieur à 128.

- 2. Écrire une fonction display_unicode(a: int, b: int) -> NoneType qui affiche le code UNICODE ainsi que le caractère correspondant pour tous les codes $k \in [a, b[$.
- 3. En remarquant que les caractères sont rangés dans l'ordre alphabétique dans la table ASCII, écrire une fonction compare(w1: str, w2: str) -> int qui prend en entrée deux mots w1 et w2 composés uniquement de minuscules et de lettres non accentuées et qui renvoie 0 si les deux mots sont égaux, 1 si le mot w1 précède le mot w2 dans l'ordre alphabétique et -1 dans le cas contraire.

Scrabble et Anagrammes

On se donne une liste de caractères s et on souhaite savoir si il est possible d'écrire le mot w au scrabble à l'aide de ces caractères. Par exemple, il est possible d'écrire le mot "python" à l'aide des caractères "haonptyb".

1. On considère la chaine s de n caractères ainsi qu'une liste t de n booléens. Le booléen t_k est égal à True si le caractère s_k a déjà été utilisé et à False sinon. Écrire une fonction

```
find_char(c: str, s: str, t: list) -> bool
```

- qui renvoie True si le caractère c est disponible dans la chaine s et False s'il ne l'est pas. Si cette fonction renvoie True, elle aura pour effet de bord de signaler le caractère comme utilisé dans la liste t.
- 2. En déduire une fonction scrabble(w: str, s:str) -> bool qui renvoie True s'il est possible d'écrire le mot w avec les lettres s. On rappelle qu'il est possible de créer une liste de longueur n contenant n fois le booléen False en écrivant t = [False for _ in range(n)].
- 3. Écrire une fonction anagramme(w1: str, w2: str) -> bool qui renvoie True si les mots w1 et w2 sont des anagrammes l'un de l'autre et False sinon. On pourra tester notre fonction avec "marie" et "aimer", "parisien" et "aspirine" ou encore avec "claudefrançois" et "fraisducaleçon".

Recherche naïve de sous-chaine

Le but de cette partie est d'écrire une fonction is_substring(w: str, s: str) -> bool qui renvoie True si w est une sous-chaine de s, et False sinon. Par exemple "th" est une sous-chaine de "Python".

- 1. Écrire une fonction is_substring_pos(w: str, s: str, i: int) -> bool qui renvoie True si w est une sous-chaine de s commençant à l'index i. Par exemple "th" est une sous-chaine de "Python" commençant à l'index 2. Si les longueurs des chaines de caractères rendent impossible le fait que w soit une sous-chaine de s commençant à l'index i, on renverra tout de suite False. Bien entendu, on renverra False dès qu'un caractère différent du caractère attendu sera trouvé.
- 2. En déduire une fonction is_substring(w: str, s: str) -> bool répondant à la question posée.
- 3. On note m la longueur de w et n la longueur de s. Montrer que la fonction $s_substring$ effectue au plus (n-m+1)m comparaisons. Montrer que quels que soient $n \in \mathbb{N}^*$ et $m \in [\![1,n]\!]$, il existe une chaine s de longueur n et une chaine w de longueur m tels que $s_substring(w, s)$ effectue exactement (n-m+1)m comparaisons.

On dit que c'est un algorithme dont la complexité dans le pire des cas est en $\mathcal{O}(nm)$.

Algorithme de RABIN-KARP

Dans cette partie, on ne considèrera que des chaines de caractères AscII et, pour toute chaine de caractère s, on notera $s_k \in [0,127]$ le code AscII de son k-ième caractère. On pose p := 131 qui est le plus petit nombre premier supérieur à 128, $q := 2^{64}$ qui est tel que q-1 est le plus grand entier sur lequel une machine 64 bits travaille de manière efficace, et on associe à chaque chaine s de longueur n l'entier

$$\sum_{k=0}^{n-1} s_k p^{n-1-k} \mod q$$

compris entre 0 et q-1, appelé hâchage de la chaine s. Deux chaines de caractères égales ont même hâchage et on espère que deux chaines différentes ont rarement le même hâchage. C'est cependant possible, et on dit que dans ce cas, il y a collision. Dans toute cette partie p et q seront des variables globales.

- 1. Écrire une fonction my_hash(s: str) -> int qui prend une chaine de caractère s et qui renvoie le hâchage associé. On pourra utiliser l'algorithme de HORNER.
- 2. Écrire une fonction power(a:int, n:int) -> int qui calcule a^n modulo q. On fera attention à ce que cet algorithme fasse intervenir le moins possible d'entiers supérieurs à q.
- 3. Écrire une fonction hash_next(c1: str, c2: str, pn: int, h: int) -> int qui, étant donné une chaine de caractère s de longueur n commençant par le caractère c1 et dont le hâchage est h, associe le hâchage de la chaine de caractère s à laquelle on a enlevé le premier caractère c1 et on a ajouté le caractère c2 en fin de chaine. L'entier pn passé à la fonction est p^{n-1} modulo q.
- 4. En déduire la fonction is_substring_rk(w: str, s: str) -> bool qui détermine si w est une sous-chaine de s. On comparera les hâchages du mot w de longueur n et des sous-chaines de s de longueur n. Lorsque ces hâchages sont égaux, on comparera directement les chaines de caractères. Dans notre fonction, on pourra utiliser la commande s[:n] qui renvoie la chaine composée des n premiers caractères de s. On comparera la performance de cette fonction is_substring_rk avec la fonction is_substring écrite dans la partie précédente.

On montre que c'est un algorithme dont la complexité en moyenne est en $\mathcal{O}(n+m)$ et la complexité dans le pire des cas est en $\mathcal{O}(nm)$. Cet algorithme est assez efficace et peut être adapté assez facilement pour chercher plusieurs chaines de caractères en même temps dans un texte. On l'utilise notamment dans les logiciels de détection de plagiat lorsqu'on cherche différents extraits à l'intérieur un long texte.

Une calculatrice

On souhaite écrire une fonction calculatrice, qui prend en entrée une chaine de caractère "2+3+10+5" et qui renvoie l'entier 20. Seul les entiers positifs sont admis et l'addition est la seule opération autorisée.

- 1. Écrire une fonction to_int(s: str) -> int qui prend en entrée l'écriture d'un entier positif et qui renvoie cet entier. Par exemple, si on lui donne la chaine "123", cette fonction renverra l'entier 123. On utilisera la fonction ord qui à un caractère associe son code Ascii et on utilisera le fait que les caractères 0, 1, ..., 9 se suivent dans la table Ascii.
- 2. Afin d'écrire la fonction compute(s: str) -> int qui à une chaine de caractère associe le résultat associé, on utilise deux variables memory et current. La première contient le dernier résultat en mémoire et la seconde contient la valeur du nombre qui est lu. Par exemple, si la chaine de caractère est "2+3+10+5", juste avant de lire le 0 la variable memory contient 2 + 3 = 5 et la variable current contient 1.

- (a) Quels changements doit-on faire sur les variables memory et current lorsqu'on lit un +?
- (b) Quels changements doit-on faire sur les variables memory et current lorsqu'on lit un chiffre?
- (c) En déduire le programme compute(s: str) -> int tel qu'il est demandé.
- 3. Améliorer le programme précédent pour qu'il marche avec des additions et des soustractions.

Troisième partie

Langage Python

Cette annexe liste limitativement les éléments du langage Python (version 3 ou supérieure) dont la connaissance est exigible des étudiants. Aucun concept sous-jacent n'est exigible au titre de la présente annexe.

Aucune connaissance sur un module particulier n'est exigible des étudiants.

Toute utilisation d'autres éléments du langage que ceux que liste cette annexe, ou d'une fonction d'un module, doit obligatoirement être accompagnée de la documentation utile, sans que puisse être attendue une quelconque maîtrise par les étudiants de ces éléments.

Traits généraux

- Typage dynamique : l'interpréteur détermine le type à la volée lors de l'exécution du code.
- Principe d'indentation.
- Portée lexicale : lorsqu'une expression fait référence à une variable à l'intérieur d'une fonction, Python cherche la valeur définie à l'intérieur de la fonction et à défaut la valeur dans l'espace global du module.
- Appel de fonction par valeur : l'exécution de f(x) évalue d'abord x puis exécute f avec la valeur calculée.

Types de base

- Opérations sur les entiers (int): +, -, *, //, **, % avec des opérandes positifs.
- Opérations sur les flottants (float): +, -, *, /, **.
- Opérations sur les booléens (bool) : not, or, and (et leur caractère paresseux).
- Comparaisons ==, !=, <, >, <=, >=.

Types structurés

- Structures indicées immuables (chaînes, tuples): len, accès par indice positif valide, concaténation +, répétition * tranche
- Listes : création par compréhension [e for x in s], par [e] * n, par append successifs ; len, accès par indice positif valide ; concaténation +, extraction de tranche, copie (y compris son caractère superficiel) ; pop en dernière position.
- Dictionnaires: création {c_1 : v_1, ..., c_n : v_n}, accès, insertion, présence d'une clé k in d, len, copy.

Structures de contrôle

- Instruction d'affectation avec =. Dépaquetage de tuples.
- Instruction conditionnelle : if, elif, else.
- Boucle while (sans else). break, return dans un corps de boucle.
- Boucle for (sans else) et itération sur range(a, b), une chaîne, un tuple, une liste, un dictionnaire au travers des méthodes keys et items.
- Définition d'une fonction def f(p_1, ..., p_n), return.

Divers

- Introduction d'un commentaire avec #.
- Utilisation simple de print, sans paramètre facultatif.
- Importation de modules avec import module, import module as alias, from module import f, g, ...
- Manipulation de fichiers texte (la documentation utile de ces fonctions doit être rappelée; tout problème relatif aux encodages est éludé): open, read, readline, readlines, split, write, close.
- Assertion : assert (sans message d'erreur).